\qquad Date: \qquad Class: \qquad

Activity Pre-Quiz Answer Key

The problem: A $25-\mathrm{m}$ diameter semispherical segmented dome is going to be constructed (see Figure 1). Six equal-length segments will be used to create the revolving line (see Figure 2). Table 1 shows the relative positions of the revolving line vertices. Assuming the dome is a solid of revolution, find the dome's volume. Show your work and give the result with three decimal places.

Figure 1

$\boldsymbol{x}(\boldsymbol{m})$	$\boldsymbol{y}(\boldsymbol{m})$
0.00000	5.00000
1.29410	4.82963
2.50000	4.33013
3.53553	3.53553
4.33013	2.50000
4.82963	1.29410

Table 1

Figure 2
Length (m)

Answer:
The same solid is obtained revolving around the x-axis or y-axis. The volume obtained revolving the segmented line around the y-axis can be computed the using the following formula:

$$
V=\pi \cdot \int_{a}^{b}[R(y)]^{2} d y
$$

Because no algebraic expression exists for the segmented line, a numerical integration must be performed. The trapezoidal rule for non-uniform partitions is appropriate for this problem:

$$
\int_{a}^{b} f(y) d y \cong \frac{1}{2} \sum_{i=1}^{n}\left(f\left(y_{i-1}\right)+f\left(y_{i}\right)\right) \cdot\left(y_{i}-y_{i-1}\right)
$$

Then, the volume can be computed using the following expression:

$$
V=\pi \int_{0}^{5} R^{2}(y) d y \cong \frac{\pi}{2} \sum_{i=1}^{6}\left(R^{2}\left(y_{i-1}\right)+R^{2}\left(y_{i}\right)\right) \cdot\left(y_{i}-y_{i-1}\right)
$$

\qquad Date: \qquad Class: \qquad

Taking $R\left(y_{i}\right)=x_{i}$, the x-values in Table 1:

$$
\begin{aligned}
\mathrm{V} \cong 1 / 2 \pi[& \left(5^{2}+4.82963^{2}\right)(1.2941-0)+\left(4.82963^{2}+4.33013^{2}\right)(2.5-1.2941)+ \\
& \left(4.33013^{2}+3.53553^{2}\right)(3.53553-2.5)+\left(3.53553^{2}+2.5^{2}\right)(4.33013-3.53553)+ \\
& \left.\left(2.5^{2}+1.2941^{2}\right)(4.82963-4.33013)\right]
\end{aligned}
$$

$$
\mathrm{V} \cong 258.843 \mathrm{~m}^{3}
$$

Note: Volume of half-sphere of radius $5 \mathrm{~m}: \quad V=\frac{1}{2} \cdot\left(\frac{4}{3} \pi \cdot r^{3}\right) \approx 261.799 m^{3}$

