## Linear Approximation Entrance Ticket Answer Key

Exact student answers will vary. An example solution is provided.

The data in the table below shows how the height of a plant changed over time.

| Day | Height <br> $(\mathrm{cm})$ |
| :---: | :---: |
| 4 | 9.2 |
| 6 | 9.9 |
| 8 | 11 |
| 11 | 12.3 |
| 13 | 13.1 |
| 15 | 14.5 |
| 18 | 15.8 |



Find the equation of a line that you think best follows the data. Show your work or include a justification of the values for your equation.
Students should plot the data and draw a line of best fit. Check that students label the axes.

Select two points to find the slope: $(0,7)$ and $(11,12.3)$.
Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{12.3-7}{11-0}=0.48 \mathrm{~cm} / \mathrm{day}$
The point $(0,7)$ gives the $y$-intercept.
Slope-intercept form equation: $y=0.48 x+7$
Where y is the height of the plant ( cm ) and x is day.

Use your equation to determine how tall the plant will be after 25 days? Show work.

Let $x=25$ days
$y=0.48(25)+7=19 \mathrm{~cm}$

