Nar	ne: Date: Class:
	Pre-Activity Worksheet
	obot called Nemo has 2.5-inch wheels and a robot named Wall-E has 3.5-inch wheels. The motors can be the same RPM (revolutions per minute). Both robots drive forward for 1 minute.
1.	Which of the following is true?a. Wall-E will go farther than Nemo.b. Nemo will go farther than Wall-E.c. Both travel the same distance.
2.	Which robot will have a greater linear velocity? a. Wall-E b. Nemo c. Both have the same linear velocity.
3.	Which robot will have a greater angular velocity? a. Wall-E b. Nemo c. Both have the same angular velocity.
	the following questions, the robots have the same wheel diameter as above (2.5-in for Nemo and -in for Wall-E).
4.	Wall-E is driving with an angular velocity of 20 radians/sec. Calculate Wall-E's linear velocity.
5.	Nemo is driving with an angular velocity of 20 radians/sec. Calculate Nemo's linear velocity.
6.	You want Wall-E and Nemo to end up at the same location. Given their respective wheel sizes,

of

describe how Wall-E and Nemo can drive to end up at the same location.