\qquad Date: \qquad Class: \qquad

Pre-Activity Worksheet Answer Key

A robot called Nemo has 2.5 -inch wheels and a robot named Wall-E has 3.5 -inch wheels. The motors of both robots have the same RPM (revolutions per minute). Both robots drive forward for 1 minute.

1. Which of the following is true?
a. Wall-E will go farther than Nemo.
b. Nemo will go farther than Wall-E.
c. Both travel the same distance.
2. Which robot will have a greater linear velocity?
a. Wall-E
b. Nemo
c. Both have the same linear velocity.
3. Which robot will have a greater angular velocity?
a. Wall-E
b. Nemo
c. Both have the same angular velocity.

For the following questions, the robots have the same wheel diameter as above (2.5 -in for Nemo and 3.5 -in for Wall-E).
4. Wall-E is driving with an angular velocity of 20 radians $/ \mathrm{sec}$. Calculate Wall-E's linear velocity.

$$
\begin{gathered}
v=\omega r \quad \omega=\frac{20 \mathrm{rad}}{\mathrm{sec}} \quad r=\frac{3.5}{2} \mathrm{in} \\
\mathrm{v}=\frac{20 \mathrm{rad}}{1 \mathrm{sec}} \cdot 1.75 \mathrm{in}=\frac{35 \mathrm{in}}{\mathrm{sec}}
\end{gathered}
$$

5. Nemo is driving with an angular velocity of 20 radians/sec. Calculate Nemo's linear velocity.

$$
\begin{gathered}
v=\omega r \quad \omega=\frac{20 \mathrm{rad}}{\mathrm{sec}} \quad r=\frac{2.5}{2} \mathrm{in} \\
\mathrm{v}=\frac{20 \mathrm{rad}}{1 \mathrm{sec}} \cdot 1.25 \mathrm{in}=\frac{25 \mathrm{in}}{\sec }
\end{gathered}
$$

6. You want Wall-E and Nemo to end up at the same location. Given their respective wheel sizes, describe how Wall-E and Nemo can drive to end up at the same location.
Wall-E could drive for a shorter time than Nemo drives. Wall-E will get there first, but they will end up in the same location. -OR- If Wall-E drives with fewer RPM (or a smaller angular velocity) than NEMO does, then they arrive at the same location and at the same time.
