\qquad Date: \qquad Class: \qquad

Determining Concentration Worksheet

Fill in this table with the reflected light values for standards A-G and the two unknown samples.

	Sample	Concentration (drops/20 ml)	Reflected light (\%)
	A	50	
	B	30	
	C	20	
	D	10	
	E	5	
	F	1	
	G	0	
Unknowns	1	?	
	2	?	

Plot the reflected light values for the standards versus the concentration below.

\qquad Date: \qquad Class: \qquad

Instructions for determining the concentrations of your unknown solutions:

1. Plot a straight line through as many of the points that you plotted for the standards as you can. Use a ruler to draw a line that best fits the data. Look at all the points and line up the ruler so that some of the points fall above the line, and some below. Draw a single line that that passes through the middle of the points.
2. Locate the reflected light value for Unknown 1 on the y-axis. Match it to the location on the standards line; then see what the corresponding concentration is.

Concentration of Unknown 1: \qquad drops/vial
Repeat for Unknown 2.
Concentration of Unknown 2: \qquad drops/vial

Answer the following questions.

1. Determine the percent change between the reflected light value of Standard A and Standard D.

$$
\text { percent change }=\left(\frac{\mid \text { Reflected light }_{\text {Standard } A}-\text { Reflected light }_{\text {Standard } D} \mid}{\text { Reflected light } \text { Standard } A}\right) \times 100
$$

2. Determine the percent change between the concentration of Standard A and Standard D.
3. Compare your answers to questions 1 and 2. What do you notice?

Name: \qquad Date: \qquad Class: \qquad
4. The actual concentration for Unknown 1 is $\mathbf{1 5}$ drops/cuvette, and the actual concentration for Unknown 2 is $\mathbf{4 0}$ drops/cuvette.

Calculate the percent error for the concentration you determined for your Unknowns. Use the following formula:

$$
\text { percent error }=\left(\frac{\mid \text { experimental }- \text { actual } \mid}{\text { actual }}\right) \times 100
$$

Unknown 1

Unknown 2

