
Name:	Date:	Class:	

Determining Concentration Worksheet Answers

Fill in this table with the reflected light values for standards A-G and the two unknown samples.

	Sample	Concentration (drops/20 ml)	Reflected light (%)
	А	50	31
	В	30	36
r d s	С	20	38
Standards	D	10	40
Sta	Е	5	43
	F	1	44
	G	0	45
Unknowns	1	?	40
C.I.K.IOWIIS	2	?	33

Plot the reflected light values for the standards versus the concentration below.

Name:	Date:	Class:
-------	-------	--------

Instructions for determining the concentrations of your unknown solutions:

- 1. Plot a straight line through as many of the points that you plotted for the standards as you can. Use a ruler to draw a line that best fits the data. Look at all the points and line up the ruler so that some of the points fall above the line, and some below. Draw a single line that that passes through the *middle* of the points.
- 2. Locate the reflected light value for Unknown 1 on the y-axis. Match it to the location on the standards line; then see what the corresponding concentration is.

Concentration of Unknown 1: _____drops/vial

Repeat for Unknown 2.

Concentration of Unknown 2: ______ drops/vial

Answer the following questions.

1. Determine the percent change between the reflected light value of Standard A and Standard D.

$$percent \ change = \left(\frac{|Reflected \ light_{Standard \ A} - Reflected \ light_{Standard \ D}|}{Reflected \ light_{Standard \ A}}\right) x \ 100$$

$$percent change = \left(\frac{|A - D|}{A}\right) \times 100$$

percent change =
$$\left(\frac{|31 - 40|}{31}\right) x 100 = \left(\frac{9}{31}\right) x 100 = 0.2903 x 100$$

2. Determine the percent change between the concentration of Standard A and Standard D.

$$percent \ change = \left(\frac{|Concentration_{Standard\ A} - Concentration_{Standard\ D}|}{Concentration_{Standard\ A}}\right) \ x \ 100$$

$$percent change = \left(\frac{|A - D|}{A}\right) x 100$$

percent change =
$$\left(\frac{|50 - 10|}{50}\right) x \ 100 = \left(\frac{10}{50}\right) x \ 100 = 0.2000 \ x \ 100$$

percent change = 20.0 %

NI	D-4	Cl	
Name:	Date:	Class:	

3. Compare your answers to questions 1 and 2. What do you notice?

The percent change between reflectivity values and the concentrations are very similar, being 29% and 20%, respectively. (Ideally these values should be equal, but they are unequal due to experimental error.)

4. The actual concentration for Unknown 1 is **15 drops/cuvette**, and the actual concentration for Unknown 2 is **40 drops/cuvette**.

Calculate the *percent error* for the concentration you determined for your Unknowns. Use the following formula:

$$percent\ error = \left(\frac{|experimental - actual|^1}{actual}\right) x\ 100$$

(Expect students to obtain experimental errors not equal to 0 since their experimental values will differ from the actual values.)

-

¹ At this point (but not before), provide actual values to the class.