Alternative fuel: Natural Gas Answer Key

Instructions: Read this webpage https://afdc.energy.gov/vehicles/natural_gas_emissions.html and then answer the questions below.

Natural Gas Vehicle Emissions:

What are the benefits of using natural gas vehicles?

Natural gas helps reduce some engine emissions.

Life Cycle Emissions and Petroleum Use:

What do CNG and LNG stand for?

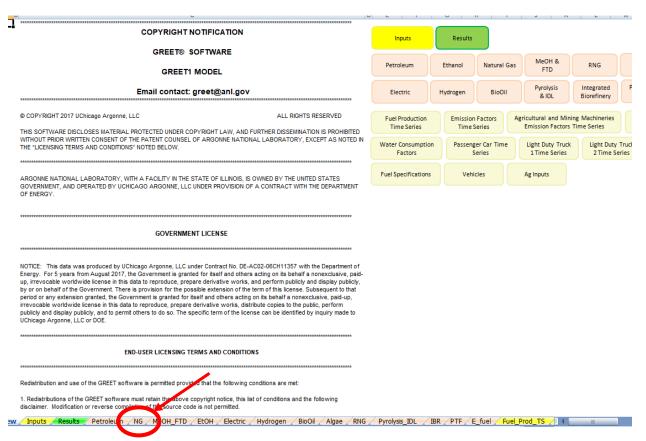
CNG = compressed natural gas & LNG = liquified natural gas

What is the difference in emissions between CNG and LNG?

CNG and LNG are very similar, one difference is that CNG production uses less petroleum and emits fewer GHGs because compressing gas requires more energy than liquifying it.

What is RNG?

RNG = renewable natural gas


Use the GREET excel database to complete the chart below:

- 1. Open this link: https://greet.es.anl.gov/greet 1 series
- Click the link underneath "GREET 1 Series (Fuel-Cycle Model) or this link GREET_2020rev1.zip
- 3. Open the GREET folder
- 4. Select "GREET1-2020"

Name: Date: Class:

- 5. To use the GREET database, you have to click on the tab at the bottom of the screen. Natural gas is abbreviated NG, so click the "NG" tab. The red arrow above is pointing to it
- 6. There is a lot of information on this database. Scroll all the way down to 4) Summary of Energy Consumption, Water Consumption, and Emissions. Record the data listed in table 4.1 for "Natural Gas as Stationary Fuels". This table tells you the energy use, water consumption, and total emissions for what are the units? Each gallon of ethanol? (it says Btu or Grams per mmBtu of fuel)
- 7. Because we are interested in reducing carbon emissions and climate change, you will be looking at the values for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). There are other variables in this chart, but we will focus just on these three. There is a red box around them in the table below.

Name: Date: Class:

	Natural Gas as Stationary	Natural Gas	NGL to Oil	NGL (based on Shale Gas) to Steam	Natural Gas to Liquefied Natural Gas (as an intermediate fuel)		Flare gas to Liquefied Natural Gas (as an intermediate fuel)		NG or FG to Compressed Natural Gas		Natural Gas to Liquefied Natural G (as a transportation fuel)	
	Fuels	generation	Sands	Crackers	Feedstock	Fuel	Feedstock	Fuel	Feedstock	Fuel	Feedstock	
.oss factor						1.017		1.019		1.001		
otal energy	100,740	86,028	78,275	69,018	70,781	127,627	70,781	130,777	104,983	44,281	70,351	12
ossil fuels	100,004	85,404	77,739	68,534	70,273	126,705	70,273	29,429	104,220	34,695	69,846	12
Coal	1,280		929	842	884	1,602	884	1,616	1,325	15,778		
Natural gas	94,685	80,338	63,485	63,867	65,378	118,849	65,378	20,505	98,839	18,302	65,051	11
Petroleum	4,039	3,980	13,325	3,825	4,011	6,255	4,011	7,308	4,056	615	3,917	
Water consumption	3.185	3.098	3.972	3.769	2.213	0.728	0.311	0.550	3.222	4.066	3.020	
VOC	10.323	8.576	6.825	6.578	6.762	1.851	6.762	-0.771	10.729	0.321	6.715	
CO	32.051	23.099	13.221	12.853	13.809	7.315	13.809	-21.621	34.116	1.082	13.560	
NOx	40.092	29.493	25.327	17.318	18.537	30.694	18.537	-19.717	42.538	1.983	18.198	1
PM10	0.476	0.452	0.693	0.418	0.432	1.562	0.432	-2.397	0.482	0.323	0.426	
PM2.5	0.427	0.406	0.640	0.376	0.388	1.449	0.388	-2.526	0.432	0.144	0.383	
S0x	11.487	11.286	11.101	11.043	11.086	9.647	11.086	10.822	11.542	4.327	11.073	
BC	0.139		0.150	0.127	0.131	0.182	0.131	-3.747	0.141	0.013	0.129	
OC	0.151	0.143	0.360	0.131	0.136	0.663	0.136	0.529	0.153	0.030	0.134	
CH4	151.608		98.558	98.433	96.523	102.338	96.523	56.535	174.236	15.722	99.198	13
120	1.418		0.052	0.100	0.132	0.053	0.132	-1.181	1.561	0.042	0.132	
02	6,208	5,415	5,230	4,491	4,604	7,528	4,605	-58,965	6,394	2,721	4,569	
CO2 (w/ C in VOC & CO)	6,291	5,478	5,272	4,532	4,647	7,545	4,647	-59,001	6,481	2,724	4,612	
GHGs	11,215	9,476	8,243	7,511	7,578	10,629	7,578	-57,618	12,122	3,207	7,623	1
4.2) Urban Emissions: Gra	ıms per mmB	tu of Fuel Throu	ighput at Each	Stage								
Loss factor				1		1.017		1.019		1.001		
VOC	0.599		0.103	0.079	0.053	0.067	0.053	0.078	0.653	0.025	0.117	.
CO	2.886		0.151	0.138	0.220	0.130	0.220	0.146	3.170	0.202	0.339	7
Overview Inc	outs Result		NG MeO	H FTD EtO	H Electric	Hydrogen	BioOil Algae	RNG	Pyrolysis IDL	IBR	PI 4 III	-

8. Record the amount of CO2, N2O, CH4 in the emissions for the "Natural Gas as Stationary Fuels" in the table below. If you would like to move through the data table to see the other data that is collected, use the arrow that has the red circle around it in the picture above.

Natural Gas					
Type of emission	Total amount of emission				
CH ₄	151.6				
N ₂ O	1.4				
CO ₂	6,208				

The abbreviations in GREET are defined below:

VOC = volatile organic compounds

CO = carbon monoxide

 NO_X = nitric oxide

PM10 = particulate matter with a diameter of 10 micrometers or less

PM2.5 = particulate matter with a diameter of 2.3 micrometers or less

 SO_X = sulfur oxides

BC = black carbon (particulate matter/ soot & contributes to climate change)

OC = organic carbon (respiratory effects)

CH₄ = methane

 N_2O = nitrous oxide

CO₂ = carbon dioxide

Name: Date: Class:

- 9. In the table below, fill in the row for natural gas.
- 10. When everyone is finished learning about the energy sources, share what you have learned with the group. Each individual should summarize the questions they answered and share the GREET emissions that were calculated. Notes should be taken in the table below so that the information can be shared with your poster group.
- 11. Circle the energy source you will use to heat your building (remember that we are assuming that the technology for this will be in place) and complete the information below the table.

Answers will vary based on student presentations.

Energy Source	Information about energy source	GREET values
Ethanol		
Electric		
Biodiesel		
Natural Gas		
Propane		
Hydrogen		

Type of fuel that will be recommended for use in heating your building structure:

The expectation is that they will choose hydrogen, but it does depend on students' presentations.

Evidence and reasoning for this recommendation:

Evidence used would be the low greenhouse gas emissions.

12. Return to the "Energy Source" document and continue to step 2.

