Name: Date: Class:

Alternative fuel: Propane Answer Key

Instructions: Read this webpage https://afdc.energy.gov/vehicles/propane emissions.html and then answer the questions below.

Propane Vehicle Emissions:

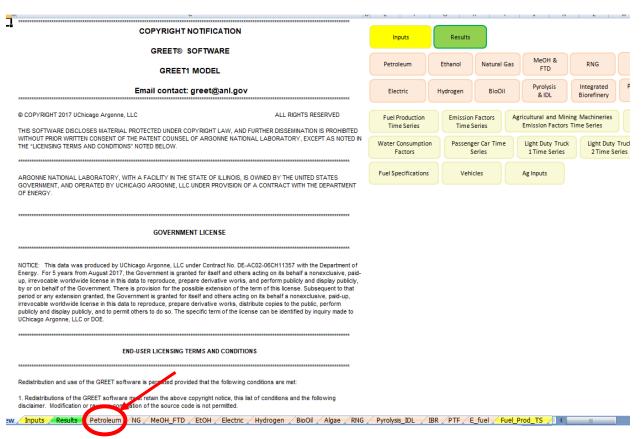
Summarize how propane compares to gasoline and diesel fuel?

Propane has less carbon in it than gasoline and diesel fuel.

Life Cycle Emissions:

What is a life cycle analysis?

A life cycle analysis assesses the environmental impacts of a product from its production and transportation to its final use.


Use the GREET excel database to complete the chart below:

- 1. Open this link: https://greet.es.anl.gov/greet 1 series
- Click the link underneath "GREET 1 Series (Fuel-Cycle Model) or this link GREET_2020rev1.zip
- 3. Open the GREET folder
- 4. Select "GREET1-2020"

Name: Date: Class:

- 5. To use the GREET database, you have to click on the tab at the bottom of the screen. Propane is liquified petroleum gas, so to get data about propane, click the tab at the bottom labeled "petroleum". The red arrow above is pointing to it.
- 6. There is a lot of information on this database. Scroll all the way down to 5) Summary of Energy Consumption, Water Consumption, and Emissions. Record the data listed in table 5.1 for the fuel type LPG (liquified petroleum gas). You are looking at the values for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). There are other variables in this chart, but we will focus just on these three. There is a red box around them in the table below.

Name: Date: Class:

	Feedstoo							Fuels		
	Crude for Use C	rude for Use								
	in U.S.	in CA	Gasoline	CA Gasoline					Conv.	
	Refineries	Refineries		Blendstock	Gasoline Ca	A Gasoline	LPG	Resi. Oil	Diesel	LSD
oss factor			0.863	0.751	0.806	0.701	0.880	0.999	1.001	
otal energy	63,266	44,241	176,470	184,947	217,473	225,385	144,390	68,117	120,658	12
ossil fuels	59,280	42,173	173,390	181,241	199,038	206,365	141,249	67,172	118,843	11
coal	6,697	3,594		6,438	9,428	10,481	5,421	1,637	3,149	
latural gas	41,104	22,913	101,645	124,051	124,302	145,214	77,816	34,742	79,371	7
etroleum	11,479	15,667	66,435	50,751	65,309	50,671	58,012	30,793	36,323	3
Vater consumption	18.449	20.793	11.208	14.134	34.584	37.315	9.548	2.733	4.476	
/OC	3.799	4.499	24.080	25.214	26.395	27.453	4.933	2.302	3.730	
:0	8.086	9.036	7.438	9.301	9.760	11.499	6.986	2.986	4.327	
10x	16.212	32,544	12,639	18.636	18.355	23.953	11.851	8.266	7.368	
M10	0.741	2.216	1.458	2.034	2.438	2.976	1.490	0.863	0.772	
M2.5	0.618	1.999	1.240	1.780	1.564	2.068	1.267	0.762	0.649	
iOx	4.814	16.503	4.717	8.497	9.930	13.458	5.735	3.956	2.693	
IC	0.136	0.354	0.164	0.233	0.197	0.262	0.124	0.099	0.091	
00	0.223	0.758	0.228	0.374	0.290	0.427	0.215	0.194	0.133	
:H4	89.876	86.919	31.230	42.517	34.200	44.734	25.993	7.580	13.819	1
120	0.078	0.058	0.213	0.254	2.427	2.465	0.169	0.080	0.138	
:02	5,267	3,864	12,489	13,503	14,648	15,594	10,864	4,570	7.710	
02 (w/ C in VOC & CO)	5,292	3,892	12,576	13,596	14,745	15,698	10,891	4,582	7,729	
GHGs	8.009	6.515		14,939	16.415	17.693	11.715	4.831	8,180	
.2) Urban Emissions: Grams per mmBtu of Fue										
oss factor			0.863		0.806	0.701	0.880	0.999	1.001	
/OC	0.671	0.913	15.431	16.454	15.318	16.273	1.915	1.339	2.121	
:0	0.303	0.363	2,528	3,466	2.479	3.356	2.698	1.039	1.495	
IOx	0.738	1.903	3.983	5.763	3.969	5.630	3.479	1.652	2.382	
M10	0.048	0.154	0.877	1.286	0.831	1.213	0.896	0.363	0.457	
M2.5	0.040	0.140	0.764	1.155	0.723	1.088	0.780	0.319	0.393	
iOx	0.764	1.413	1.717	2.319	1.799	2.361	2.678	0.775	0.940	
	0.006	0.021	0.088	0.121	0.083	0.114	0.061	0.034	0.051	
IC .		0.052	0.110	0.154	0.106	0.147	0.081	0.046	0.065	

7. If you would like to move through the data table to see the other data that is collected, use the arrow that has the red circle around it in the picture above.

Propane					
Type of emission	Total amount of emission for LPG				
CH ₄	25.99				
N ₂ O	.169				
CO ₂	10,864				

The abbreviations in GREET are defined below:

VOC = volatile organic compounds

CO = carbon monoxide

 NO_X = nitric oxide

PM10 = particulate matter with a diameter of 10 micrometers or less

PM2.5 = particulate matter with a diameter of 2.3 micrometers or less

 SO_X = sulfur oxides

BC = black carbon (particulate matter/ soot & contributes to climate change)

OC = organic carbon (respiratory effects)

CH₄ = methane

 N_2O = nitrous oxide CO_2 = carbon dioxide

- 8. In the table below, fill in the row for propane.
- 9. When everyone is finished learning about the energy sources, share what you have learned with the group. Each individual should summarize the questions they answered and share the GREET emissions that were calculated. Notes should be taken in the table below so that the information can be shared with your poster group.
- 10. Circle the energy source you will use to heat your building (remember that we are assuming that the technology for this will be in place) and complete the information below the table.

Answers will vary based in student presentations

Energy Source	Information about energy source	GREET values
Ethanol		
Electric		
Biodiesel		
Natural Gas		
Propane		
Hydrogen		

Type of fuel that will be recommended for use in heating your building structure:

The expectation is that they will choose hydrogen, but it does depend on students' presentations.

Evidence and reasoning for this recommendation:

Evidence used would be the low greenhouse gas emissions.

11. Return to the "Energy Source" document and continue to step 2.

