Surface Area Worksheet Answers

If a rectangular box is opened:
1,2 = base or ends
3,5 = sides
4 = bottom or floor
$6=$ top or ceiling

Shape	Lateral Surface Area (LSA)	Total Surface Area (TSA)
Cuboid	2 height(length + base)	$2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})=2 \mathrm{Bh}+($ perimeter)(height)
Cube	$4 \mathrm{a}^{2}$	$6 \mathrm{a}^{2}$
Prism	Base perimeter \times Height	LSA +2 (area of one end)
Cylinder	$2 \pi r h$	$2 \pi r(r+h)$

1. Define the following terms:

a. lateral surface area - surface area for all sides of a 3D object excluding the base and top sides; part of prism that are not the bases; units are squared (x^{2})
b. total surface area - measure of the total area that the surface of a 3D object occupies; units are squared (x^{2})
c. two-dimensional (2D) - flat object having the dimensions of width (x) and height (y) only
d. three-dimensional (3D) - solid object with dimensions of width (x), height (y) and depth (z)

2. Draw the geometric shapes for the following objects:

a. cuboid - 3D box-shaped object; has six rectangular faces at right angles to each other; sometimes called a rectangular prism because it has the same cross-section along a length
b. cube-3D solid; symmetrical three-dimensional shape with six equal squares
c. prism-3D solid; same shape at beginning and end (ex. rectangle or triangle) with each end referred to as bases; bases are separated by a height
d. cylinder - 3D solid; has two equivalent round shapes at either end and two parallel lines connecting the round ends; has 1 curved side but no corners

Show the equation and solving of the following problems:

3. The dimensions of a right rectangular prism are 4 inches by 5 inches by 6 inches. What is the surface area, in square inches, of the prism?
S.A. $=$ Base Perimeter \times Height +2 (Area of Base)
S.A. $=(4+4+5+5) \times(6)+2(4 \times 5)$

Answer $=148 \mathrm{in}^{2}\left(955 \mathrm{~cm}^{2}\right)$
4. A cube has a surface area of 54 square meters. What is the volume, in cubic meters, of the cube?
$6 A=54$ square meters $\left(\mathrm{m}^{2}\right)$
$A=54 \mathrm{~m}^{2} / 6$
$A=9 \mathrm{~m}^{2}$
$A=I \times w$ where for a cube, $I=w=h$
$A=I^{2}=9 \mathrm{~m}^{2}$
I = square root of 9
I = w = h = 3 meter per side

$$
\begin{aligned}
& V=1 \times w \times h \\
& V=3 m \times 3 m \times 3 m=27 \mathrm{~m}^{3}
\end{aligned}
$$

5. A cubic prism has the dimensions of 4 inches by 4 inches and a height of 10 in . What is the surface area?
S.A. $=2 B+($ perimeter $)($ height $)=2(4 \times 4)+(4 \times 4)(10)=2(16)+(16)(10)=32 \mathrm{in}^{2}+160 \mathrm{in}^{2}=192 \mathrm{in}^{2}$ (1239 cm ${ }^{2}$)
6. Find the surface area of a right triangular prism with a sides of 3 in . $\times 4 \mathrm{in} . \times 5 \mathrm{in}$. and a height of 12 in . S.A. $=2 B+($ perimeter $)($ height $)=2(1 / 2 \mathrm{bh})+\mathrm{ph}=2(1 / 2 \times 3 \times 4)+(3+4+5)(12)=12+(12)(12)=$ $156 \mathrm{in}^{2}\left(1006 \mathrm{~cm}^{2}\right)$
7. What is the surface area of a cylinder with a radius of 3in. and a height of 6 in .?
S.A. $=2 \pi r(r+h)=2(3.14)(3) \times(3+6)$
S.A. $\approx\left(169 \mathrm{in}^{2}\right)$
