## **TeachEngineering** STEM Curriculum for K-12

#### HARE AND SNAIL CHALLENGES



Subscribe to our newsletter at TeachEngineering.org to stay up-to-date on everything TE!



### **PRE-ACTIVITY QUIZ**

1. What are some design considerations to make a fast robot?

2. What are some design considerations to make a slow robot?





### **PRE-ACTIVITY QUIZ ANSWERS**

- What are some design considerations to make a fast robot? Make the robot very light, that is, use a minimal number of parts. Make the wheels turn faster.
- 2. What are some design considerations to make a slow robot? Make the robot very heavy, that is, use many and heavier parts.

Make the wheels turn slower.



### **CHALLENGES TRACK SPECS**

- Make the track a straight path
- Make the track 5 to 15 feet in length
- Make the track about 3 feet wide
- Clearly identify the start and finish lines

# start → the track →

Use a stopwatch to time the races
 TeachEngineering



#### **DAY 1: HARE CHALLENGE**

#### 50 minutes

To construct a LEGO MINDSTORMS NXT robot and program it to travel the given track as fast as possible.

#### THE FASTEST ROBOT WINS!

- Use the concepts from the gear lesson we just completed:
  - What gear ratio should you use?
  - What happens to torgue when you have a high gear ratio?
- Let's review those concepts once again quickly before you start the challenge.





### WHAT IS A GEAR?

#### **Lesson Review**

A gear is a wheel with teeth that meshes with another similar gear that is typically larger or smaller.

- Gears come in various sizes and types.
- Depending on the situation, one gear may work better than another.
- What are gears used for?
  - Changing speed
  - Changing direction of motion
  - Changing torque





### **MOST COMMONE GEAR: SPUR GEARS**

#### **Lesson Review**

*Look at the photograph below.* The small (input gear) has 8 teeth and the large (output gear) has 40 teeth. Assume that X turns of the small one causes 1 turn of the large one. *What is X*?



In this case, the gear ratio is defined as the number of teeth, Notice that this is in the same ratio as the number of teeth, that is, 8:40 or 1:5.



### **GEAR RATIO: EFFECT ON SPEED & TORQUE**

#### **Lesson Review**

- Imagine two 40-teeth gear contacting each other. When one 40-tooth gear turns once, how many times will the other 40-tooth gear turn?
  Answer = 1
- Now, imaging replacing one of the 40-tooth gears with an 8-tooth gear, with the 40-tooth gear turning the 8-tooth gear. When the 40-tooth gear turns once, how many times will the 8-tooth gear turn?

In this last case (8-tooth connected to 40-tooth), the 40-tooth gear's axle will have 5 times the torque (rotational force) than the 8-tooth gear's axle.

So, although the large gear turns slowly, it can push more!



### WHAT IS TORQUE? WHY IS IT IMPORTANT?

#### **Lesson Review**

- Think of torque as a rotational force, that is, a force that causes rotation and not forward movement.
- For the same motor power setting, more torque in a machine (such as a bicycle or car) leads to lower speeds, and less torque leads to higher speeds. This is because

#### power = torque \* speed.

- So, when we increase speed from the input to the output gear, we decrease torque by the same amount!
- So, in any design you develop, you must decide which is more important: speed or torque, or maybe both...

and then select the appropriate gear ratio!

Now, begin the hare challenge!



#### **DAY 2: SNAIL CHALLENGE**

#### 50 minutes

To construct a LEGO MINDSTORMS NXT robot to travel the same track as *slowly as possible.* 

#### THE SLOWEST ROBOT WINS!

- Use the concepts from the gear lesson that you just used with the hare challenge.
- Important factors:
  - Robot weight
  - Motor power setting





### **POST-ACTIVITY QUIZ**

1. What did you find as the most effective design elements to make your robot a) faster and b) slower?

2. What are some problems you faced when you designed a fast robot for the Hare Challenge?



### **POST-ACTIVITY QUIZ ANSWERS**

- 1. What did you find as the most effective design elements to make your robot a) faster and b) slower?
  - a) FASTER: increasing gear ratio, increasing motor power, decreasing robot weight
  - b) SLOWER: decreasing gear ratio, decreasing motor power, increasing robot weight
- 2. What are some problems you faced when you designed a fast robot for the Hare Challenge?

When you make a light robot, it is not structurally stable and can fall apart. You also lose torque, making the robot unstable.



### HARE CHALLENGE SOLUTION

- In the Hare Challenge, use the minimal number of parts on the LEGO robot, that is, keep the weight low.
- Then attach the largest gear (40-tooth) to the motor and the smallest gear (8-tooth) to the wheel. It doesn't matter what gears are in between the 40tooth gear and 8-tooth gears since they act as idler gears.
- Use the maximum power setting on the motor.
- If an odd number of gears, have the program tell the robot to go forwards.
- If an even number of gears, have the program tell the robot to go backwards (in order to make the robot move forwards since even # of gears reverses direction).
- Expect some trial and error to be necessary.
  TeachEngineering



### **SNAIL CHALLENGE SOLUTION**

- In the Snail Challenge, make a heavy LEGO robot (use as many parts as possible) since heavy machines move slowly with the same motor.
- Then attach the smallest gear (8-tooth) to the motor and the largest gear (40-tooth) to the wheel. It doesn't matter what gears are in between the 8tooth gear and 40-tooth gears since they act as idler gears.
- Use the minimum power setting on the motor.
- If an odd number of gears, have the program tell the robot to go forwards.
- If an even number of gears, have the program tell the robot to go backwards (in order to make the robot move forwards since even # of gears reverses direction)
- Expect some trial and error to be necessary.
  TeachEngineering



#### VOCABULARY



- design: Loosely stated, the art of creating something that does not exist.
- gear: A rotating machine part with cut teeth that mesh with another toothed part in order to transmit torque; in most cases, the teeth on both gears are identical in shape.
- torque: The tendency of a force to rotate an object about its axis or pivot.

