Alkane Resources Activity Project Notebook

Assign Roles for Team Partners:

Captain: __

Captain reports any information to the teacher and keeps the team moving at the assigned pace.

Recorder: _

Recorder writes responses to all team activities once the team agrees on their responses.

Technologist: _

Technologist opens assigned web pages on their own device and makes sure everyone can see and interact with the web pages together.

Day 1: Problem-Finding

Consider your own background experience to answer these two questions:

What problems can we solve by using renewable resources?

Can most cars currently use renewable fuel? Why or why not?

Use the presentation slides and this video from CISTAR to answer these questions:

How much oil is used for transportation each day in the USA?

What percent of transportation fuel currently comes from oil?

What percent of chemicals, including plastics, comes from oil?

What percent of transportation fuel and chemicals do we want to replace with renewable sources?

How long will it take to develop the technology to completely convert to renewable fuels?

What resource found in the USA can replace imported oil?

How long is that resource projected to last?

Which light hydrocarbons are found in shale gas? Write their chemical formulas here.

What two main products are obtained by processing shale gas?

Which reaction will we be looking at during this project?

Evaluate your own current understanding of the problem: Light shale gases like ethane need to be converted into fuels and petrochemicals. How can that be done?

What do you KNOW about this problem?

What do you NEED TO KNOW about this problem?

these words that y Project Glossary a	ou wrote on your pre-asses bove. Then score each wor	main differences, if any, betwe sment and their actual definiti d from 1-3 for level of underst	on provided in the
2 – Some under	nding of this word standing of this word nderstanding of this word		
	Level of Understanding		
		element	
		compound	
		chemical reaction	
		hydrocarbon	
		alkane	
		monomer	
		oligomerization	
		renewable resource	
		nonrenewable resource	

Alkanes

Alkanes are compounds that contain only carbon and hydrogen atoms, so they are in a larger class of chemical compounds called hydrocarbons. Alkanes only have single bonds between carbon atoms. Other types of hydrocarbons may also contain double or triple bonds between carbon atoms. The bonds between carbon and hydrogen are always single bonds.

Date:

Day 2: Investigating Hydrocarbons					
Each group has been assigned an alkane compound to investigate using WebMO.					
Name of your alkane:					
Chemical formula of your alkane:					
How many carbon atoms are in your alkane?					
How many hydrogen atoms are in your alkane?					
Create a model of your alkane using WebMO. 1. Go to <u>WebMO Demo Server</u> : https://www.webmo.net/demoserver/cgi-bin/webmo/login.cgi					
 Log in with these credentials: Username: guest Password: guest 					
3. Type <enter></enter>					
4. Across the top should read "New Job", "Refresh", "Download", etc.					
5. Select "New Job".					
6. Click "Create New Job". This will go to the "Build Molecule" page.					
7. Click the blank screen once for each carbon atom in the molecule.					
8. Move the cursor between clicks so the carbon atoms are in a line.					
Image(s) created with WebMO software, <u>www.webmo.net</u>					
9. Draw a chemical bond between each of the atoms: Click and hold the cursor on the first atom and drag the cursor to the next atom. Control-Z will reverse any mistakes.					
Image(s) created with WebMO software, <u>www.webmo.net</u>					

Alkane Resources Activity – Project Notebook

10. Select "Build	l", then se	elect H f	or hydro	gens.						
11. Click the blank screen once for each hydrogen atom, spreading them evenly around the carbon atoms.							ms.			
	File	Edit	Tools	Build	Cleanup	Calculate	Lookup	Help		
	*			C O						
	님			O N						
	4			Н						
12. Draw a chem	ical bond	betwee	n each h	nydrogen	and the ne	earest carbo	n atom.			
13. Under "Clean	up", seleo	ct "Geor	netry" to	correct	the shape o	of your mole	cule.	_		
File Edit Tools Build C					Cleanup	Calculate Loo	okup Help			
<u>&</u>			Generate Bonds							
	님				Add Hydrogen: Hybridization	S				
	4 ↔				Geometry Mechanics Opt	timize				
14 Under "Locky		"Malaa	ulo lofo"	and rea			otion chart			
14. Under "Lookup", select "Molecule Info" and record the following information about your molecule:										
Stoichiometr	ry:									
IUPAC Name):									
Molar Mass:										

Date:

			Day 3: Prob	lem-Solving					
1.		ur experience using V wo ideas here.	VebMO, brainstorm fo	or ideas to convert et	hane into larger molec	cules. Write			
	write tha	t definition in <u>your ow</u>	n <u>words</u> here:		oduction slides. Do yo				
Le	Let's think about how oligomerization could be used to make butylene C_4H_8 from ethylene, C_2H_4 .								
	 Get a set of gumdrops and toothpicks. Decide as a group which colors represent carbon and hydrogen atoms. 								
	b. Fill in the table with the number of carbon and hydrogen atoms for both ethylene and butylene.								
		C ₂ H ₄ Note: ethylene has a double bond between the carbon atoms		Ca Note: butylene h between the first					
		carbons	hydrogens	carbons	hydrogens				
3.	Use the	gumdrops to model e	thylene and butylene	molecules.					

4. Use the extra gumdrops to model how ethane can be converted into octane.

Date:

[Reactants]> [Products]					
Gumdrop Reaction Rubric	No (0 points)	Sort of (1 point)	Yes (2 points)		
The reactants are clearly on the left side of the arrow and the products are clearly on the right.					
Ethylene and butylene molecules are depicted with one double bond (two toothpicks between atoms)					
The reactants contain one or more ethylene molecules, and the products contain one or more butylene molecules					
Both sides of the reaction have the same number of hydrogen atoms					
Both sides of the reaction have the same number of carbon atoms					
	Total Score:				
. Correct your reaction model until it has a score of at least 8 pc check it.	bints before you	ur captain ask	s me to come		
7. Take a photo of your model reaction and add it here if using this worksheet digitally.					

