\qquad Date: \qquad Class: \qquad

Graphing Data and Statistical Analysis with Excel Practice

Instructions: In this practice, you will apply your basic knowledge of Microsoft Excel to analyze data using Excel graphing tools and its built-in statistical functions. From the data tables, you will create scatter plots, calculate and graph averages and standard deviations, compute other central tendency numbers, and calculate p-values using the T-distribution.

Set up a work session:

1. Open a new Excel session. Use a full screen window.
2. Use the data sets provided below.

Guided Practice: Average Faculty Salaries, Males vs. Females

Instructions. For the next data set, Average Faculty Salaries, Males vs. Females, perform Exercises 1-6. Correctly label all your formatted graphs and tables with results.
Save your practice in an Excel file named like this: Salaries_YourFullName_Period.xls.

College ID	Male AP	Female AP
C-1	34.5	33.9
C-2	30.5	31.2
C-3	35.1	35.0
C-4	35.7	34.2
C-5	31.5	32.4
C-6	34.4	34.1
C-7	32.1	32.7
C-8	30.7	29.9
C-9	33.7	31.2
C-10	35.3	35.5
C-11	30.7	30.2
C-12	34.2	34.8
C-13	39.6	38.7
C-14	30.5	30.0
C-15	33.8	33.8
C-16	31.7	32.4
C-17	32.8	31.7
C-18	38.5	38.9
C-19	40.5	41.2
C-20	25.3	25.5
C-21	28.6	28.0
C-22	35.8	35.1

Exercises:

1. Creating a graph

For the paired data set 1, create a line graph. Place this graph as a new sheet.
(Hint: Select data columns Males - Females

To make the values in column College be the x-values in this graph:

- In the Chart Wizard - Step 2 of 4 - Chart Source Data , select tab Series.
- Click on box: Category (x) axis labels: $\quad \square$ click here
- Using the mouse, select only the data in column College press Enter.
\qquad Date: \qquad Class: \qquad

2. Formatting a graph

$$
\rightarrow \text { MALES } \rightarrow \text { FEMALES }
$$

a. Place the graph legend at the bottom of the graph.
b. Eliminate the plot area default gray color. (Hint: Click on Plot Area $>$ Format $>$ Select Plot Area or double click on Plot Area.)
c. Change the major gridlines to a broken line. (Hint: Double click in one of the gridlines.)
d. Insert the next labels. For x-axis: College ID; for y-axis: Average Salary (x1,000/year)
(Hint: Chart Chart Options Titles)
e. Include in the graph title: College Assistant Professor Salaries. Males vs. Females
3. Calculating statistics
a. Compute the data differences.
b. Compute samples/differences means.
[Hint: use function =average()]
c. Compute sample/differences standard deviations.
[Hint: use function =stdev()]
d. Find the sample/differences maximum values.
[Hint: use function $=\max ()$]
e. Find the sample/differences minimum values.
[Hint: use function $=\min ()$]
f. Find the sample/differences ranges.
g. Find the sample/differences medians.
[Hint: use function =median()]

| | A | B | C | D |
| :---: | :--- | ---: | ---: | ---: | ---: |
| 8 | College | MALES | FEMALES | Difference |
| 9 | C-1 | 34.5 | 33.9 | 0.6 |
| 10 | C-2 | 30.5 | 31.2 | -0.7 |
| 11 | C-3 | 35.1 | 35 | 0.1 |
| 12 | C-4 | 35.7 | 34.2 | 1.5 |
| 13 | C-5 | 31.5 | 32.4 | -0.9 |
| 14 | C-6 | 34.4 | 34.1 | 0.3 |
| 15 | C-7 | 32.1 | 32.7 | -0.6 |
| 16 | C-8 | 30.7 | 29.9 | 0.8 |
| 17 | C-9 | 33.7 | 31.2 | 2.5 |
| 18 | C-10 | 35.3 | 35.5 | -0.2 |
| 19 | C-11 | 30.7 | 30.2 | 0.5 |
| 20 | C-12 | 34.2 | 34.8 | -0.6 |
| 21 | C-13 | 39.6 | 38.7 | 0.9 |
| 22 | C-14 | 30.5 | 30 | 0.5 |
| 23 | C-15 | 33.8 | 33.8 | 0 |
| 24 | C-16 | 31.7 | 32.4 | -0.7 |
| 25 | C-17 | 32.8 | 31.7 | 1.1 |
| 26 | C-18 | 38.5 | 38.9 | -0.4 |
| 27 | C-19 | 40.5 | 41.2 | -0.7 |
| 28 | C-20 | 25.3 | 25.5 | -0.2 |
| 29 | C-21 | 28.6 | 28 | 0.6 |
| 30 | C-22 | 35.8 | 35.1 | 0.7 |
| 31 | | Males | Females | Difference |
| 32 | Mean | 33.4318 | 33.2 | 0.23182 |
| 33 | St Dev | 3.54621 | 3.60119 | 0.84594 |
| 34 | Max | 40.5 | 41.2 | 2.5 |
| 35 | Min | 25.3 | 25.5 | -0.9 |
| 36 | Range | 15.2 | 15.7 | 3.4 |
| 37 | Median | 33.75 | 33.25 | 0.2 |
| | | | | |

\qquad
\qquad Class: \qquad
4. Graphing data differences

Repeat Exercises 1 and 2 for the data differences obtained in Exercise 3, with the next changes:
a. Delete the graph legend.
b. Add a y-axis label: Average Differences (x \$1,000/year)
c. Title the graph: College Assistant Professor Salary Differences: Males vs. Females

Salaries Differences College Assistant Professors (Males - Females)

5. Graphing mean and standard deviation for the differences
a. Include in the graph a horizontal line representing the sample mean.
(Hint: Create a list with mean values, then Chart $>$ Source Data Add [Select created data].)
b. Include in the graph horizontal lines representing mean ± 1 standard deviation.
(Hint: Create list with \pm SD, then $>$ Source Data - Add [Select created data].)
c. Include in the graph a horizontal line representing mean ± 2 standard deviations.
d. Format the sample mean line: Change the color to red and select the next thicker line. (Hint: Double click on line.)
e. Format the standard deviation lines: Change the color to red and select a broken thicker line (Hint: Double click on line.)

Name: \qquad Date: \qquad Class: \qquad
6. Compute the sample differences t-value, p-value and sampling standard deviation
a. Compute the sample associated t-value or sample test statistic. Use equation: $t=\bar{d} \cdot \sqrt{n} / s_{d}$, where \bar{d} is difference mean, n is sample size, and S_{d} is difference standard deviation. Using the values in the table:

$$
t=\frac{0.23182 \cdot \sqrt{22}}{0.84594}=1.28535
$$

b. Compute p-value using T-distribution.

Use function ttest() with the values in table shown in step 2
=ttest(B8:B30,C8:C30,1,1)
where the first " 1 " indicates one-tail test, and the second " 1 " indicates a paired test.
c. Compute the sampling standard deviation for this difference.

Use equation: $s_{\bar{d}}=s_{d} / \sqrt{n}$:

$$
S_{\bar{d}}=\frac{0.84594}{\sqrt{22}}=0.18035
$$

d. Do your results support the claim that no significant salary difference exists between male and female college professors...

	A	B	C	D
20	C-12	34.2	34.8	-0.6
21	C-13	39.6	38.7	0.9
22	C-14	30.5	30	0.5
23	C-15	33.8	33.8	0
24	C-16	31.7	32.4	-0.7
25	C-17	32.8	31.7	1.1
26	C-18	38.5	38.9	-0.4
27	C-19	40.5	41.2	-0.7
28	C-20	25.3	25.5	-0.2
29	C-21	28.6	28	0.6
30	C-22	35.8	35.1	0.7
31		Males	Females	Difference
32	Mean	33.4318	33.2	0.23182
33	St Dev	3.54621	3.60119	0.84594
34	Max	40.5	41.2	2.5
35	Min	25.3	25.5	-0.9
36	Range	15.2	15.7	3.4
37	Median	33.75	33.25	0.2
38				
39			t-value	1.28535
40			p-value	0.10633
41			S-StDev	0.18035

...at the 5\% level of significance?
...at the 10% level of significance?
Example Exercise 6 results
(Write your conclusions in a textbox on the results spreadsheet. Include an explanation. Example:)
Because p-value $=0.10633$ is greater than 0.05 or 0.10 , we have no evidence at the 5% or 10% level of significance to reject the original assumption (H_{0}) that female assistant professors receive, on average, the same salary as the male assistant professors.
\qquad Date: \qquad Class: \qquad

Exercises:

1. Create a graph
2. Format a graph (a-e)
3. Calculate statistics (a-g)
4. Graph data differences (a-c)
5. Graph mean and standard deviation for the differences (a-e)
6. Compute the sample differences t-value, p-value and sampling standard deviation (a-d)

Independent Practice: Unemployment: College vs. High School Graduates

Instructions: For the next data set, Unemployment: College vs. High School Graduates, perform Exercises 1-6. Correctly label all your formatted graphs and tables with results.
Save your practice in an Excel file named like this: Unemployment_YourFullName_Period.xls.

Year	College	High School
1999	2.8	5.9
2000	2.2	4.9
2001	2.2	4.8
2002	1.7	5.4
2003	2.3	6.3
2004	2.3	6.9
2005	2.4	6.9
2006	2.7	7.2
2007	3.5	10.0
2008	3	8.5
2009	1.9	5.1
2010	2.5	6.9

Independent Practice: Birth Rates vs. Death Rates

Instructions. For the data set, Birth Rates vs. Death Rates, perform Exercises 1-6. Correctly label all your formatted graphs and tables with results.
Save your practice in an Excel file named like this: BDRates_YourFullName_Period.xls.

County ID	Birth	Death
CO-01	12.7	9.8
CO-02	13.4	14.5
CO-03	12.8	10.7
CO-04	12.1	14.2
CO-05	11.6	13.0
CO-06	11.1	12.9
CO-07	14.2	10.9
CO-08	12.5	14.1
CO-09	12.3	13.6
CO-10	13.1	9.1
CO-11	15.8	10.2
CO-12	10.3	17.9
CO-13	12.7	11.8
CO-14	11.1	7.0

