Estimating Storage Capacity Worksheet

1. Calculate d

$$
d=\frac{m}{\sin }
$$

- d is the spacing of the structure (here: track pitch)
- θ is the angle of the $m^{\text {th }}$ diffracted ray
- m is the order of the diffracted ray. Here we only use the first order, i.e. $\mathrm{m}=+1,-1$

To get a better estimate for d , calculate the average $d_{\text {mean }}=\frac{d_{+1}+d_{1}}{2}$ in the last column.

	Laser color	Wavelength (nm)	$\mathbf{\Theta , ~ m = + 1}$	$\Theta, \mathbf{m}=-\mathbf{1}$	$\mathbf{d}, \mathbf{m}=+\mathbf{1}$	$\mathbf{d}, \mathbf{m}=-\mathbf{1}$	$d_{\text {mean }}$
CD							

2. Estimate the storage

Using your measured distance d between tracks, how many tracks fit on a disc if 33 mm are writable?

A CD track has around 270,000 pits. A DVD track fits around 500,000 pits because the pits are smaller. How many pits fit on a CD and DVD?

Divide the number by 8 to get an estimate of the storage in bytes. Compare with the info on the CD/DVD. Note that the DVD has two layers.
3. Blu-ray discs need special readers that rely on blue lasers. How can a blu-ray disc store more information? Why is the laser blue?
4. What are two advantages of using digital media to store data? What is a disadvantage?

