

Forces and Newton's Laws

Houston, We Have a Problem! Lesson

Direct Forces

- A force is a push or a pull.

- It is measured in Newtons (N)

Newton's First Law

Law of Inertia -

an object at rest will remain at rest or an object will continue at constant velocity until acted on by some outside force.

Newton's Second Law

The acceleration of an object is directly proportional to the net force on it and inversely proportional to its mass.
$F=m a$

Newton's Third Law

For every action, there is an equal reaction in the opposite direction.

Rocket boosters thrust down and the shuttle goes up!

Free-Body Diagram: 1

Force
Applied
$F_{\text {Net }}=F_{a}-F_{0}$
$\left(F_{\mathrm{a}}\right.$ or
$\left.\mathrm{F}_{\text {thrust }}\right)$

Force Opposing
$\left(F_{o}\right.$ or F_{g} and $\quad m a=F_{\text {thrust }}-F_{g}-F_{\text {drag }}$ $F_{\text {drag }}$)

The opposing force is the weight (or force due to gravity, Fg) and air drag of the rocket

Free-Body Diagram: 2

The rocket is decelerating

I

$$
F_{\text {Net }}=F_{a}-F_{0}
$$

Force
Opposing

$$
\begin{aligned}
& \left(F_{o} \text { or } F_{g}\right. \text { and } \\
& \left.F_{\text {drag }}\right)
\end{aligned} \quad m a=0-F_{g}=F_{d r a g}
$$

The opposing force is the weight, Fg, and air drag of the rocket.

Free-Body Diagram: 3

Force Opposing
($\mathrm{F}_{\text {drag }}$)

$F_{\text {Net }}=F_{a}-F_{0}$

Force Applied
$m a=F_{g}-F_{\text {drag }}$
(F_{g})

The applied force is the weight, Fg

