
What is Python?

What is Python?

● Python is a popular high-level programming language used in various
applications

○ Python is an easy language to learn because of its simple syntax

○ Python can be used for simple tasks such as plotting or for more complex tasks like
machine learning

Variables, Objects, and Classes

● A variable is a reference to a value stored in a computer’s memory.
● Variables can be sorted into a variety of categories (or data types)

such as numbers (int/float etc), Boolean values (true/false), and
sequences (strings, lists etc).

● An object is a collection of data from a computer’s memory that can
be manipulated.

○ ALL VARIABLES ARE OBJECTS although some objects can be defined by
data referred to by multiple variables.

○ Methods are the functions used to act on/alter an object’s data. They
describe what your object can “do.”

Variables, Objects, and Classes (cont.)

● A class is a collection of
objects who share the same
set of variables/methods.

○ The definition of the class
provides a blueprint for all the
objects within it (instances).

○ Instances may share the same
variables (color, size, shape, etc.),
but they do NOT share the same
values for each variable
(blue/red/pink, small/large,
square/circular etc.)

Instance #1
Color: Pink
Name: Polo

Instance #2
Color: Red
Name: Mini

Instance #3
Color: Blue
Name: Beetle

Basic Syntax Rules
● The name of your variable (myInt etc.) is placed on the left of the “=“ operator.

○ Most variable names are in camel case where the first word begins with a lowercase letter and any subsequent
words are capitalized

○ Variable names may also appear in snake case where all words are lowercase, with underscores between
words

● The assignment operator (“=“) sets the variable name equal to the memory location where your value is found.
● The value of your variable (“Hello, World”) is placed on the right of the “=“ operator.

○ The type of this value does NOT need to be stated but its format must abide by a given object type (as shown).

myString = “Hello, World” myInt =
7
myFloat = 7.0
myList = [7, 8, 9] myBoolean =
true

Basic Syntax Rules

● Function Syntax

○ def...: indicates that you are defining a new function.

○ function() refers to the name of your function. By convention, this name is typically lowercase and represents a
verb/action.

○ a,b refers to parameters (values or variables) that can be used within the statements of your function’s definition
(......). If your function has no parameters, an empty parenthetical () is used.

○ The return statement is an optional statement that will return a value for your function to your original call.

def function(a, b):
......
return a + b

Basic Syntax Rules (cont.)

● Calling a function

○ Call the function by referring to its name (function()) and by placing
any necessary arguments (1, 2) within the parenthesis separated by
commas. myValue = function(1, 2)

○ If you wish, you can set your function call equal to a variable (myValue). The value
returned by the function will be assigned to your variable name.

myValue = function(1, 2)

Common Data Types and Operators
● A data type is a means of classifying a value and determining what

operations can be performed on it. All objects have a data type.
● Operators are symbols used carry out specific functions/computations.
● https://www.youtube.com/watch?v=v5MR5JnKcZI

https://www.youtube.com/watch?v=v5MR5JnKcZI

Input/Output

● Input functions (input()) allow users of a program to place values
into programming code.

○ The parameter for an input function is called a prompt. This
is a string (this can be indicated by “” or ‘’) such as “Enter a
number: “

○ The user’s response to the prompt will be returned to the
input statement call as a string. To use this value as any
other data type, it must be converted with another function
(int()).

● Print functions (print()) allow programs to output strings to users on
a given interface.

○ The parameter of this function is of any type. All types will
automatically be converted to strings.

xString = input(“Enter a number: “)
x = int(xString)
y=x+2
print(y)

If-else Statements
● If-else statements allow programmers to adapt the function of

their code based on a given condition.
● If a given condition (i.e. x % 2 == 0) is true, then the statements

following the if statement (if) will be executed. If the condition is
false, the statements following the else statement (else) will be
executed.

○ The condition is tested using the Boolean operators == (is
equal to), != (is not equal to), and (used to test multiple
conditions), and or (used to test if AT LEAST ONE condition is
true).

○ Additionally, else-if statements (elif) can be used to provide
unique coding statements for multiple conditions.

xString = input(“Enter a number: “)
x = int(xString)
if x % 2 == 0:

print(“This is an even number”)
elif x == 0:

print(“This number equals 0”)
else:

print(“This is an odd number”)

For Loops
● For loops perform the same task (iterate) for the number of

times specified by an iterable (something that can be
evaluated repeatedly such as a list, string, or range).

● for defines the for loop
● x is the variable defining the number of times the

statements within the loop (print(myInt)) are executed.
● The range(start, stop, step) function is often used to define

x.

○ The starting value is defined by start, the final value is
defined by stop – 1, and the magnitude at which x
changes between loops is defined by step.

● in is a Boolean operator that returns true if the given value
(x) is found within a given list, string, range etc.

myString = input(“Enter a number: “)
myInt = int(myString)

for x in range(0, 5, 1): print(myInt)

While Loops
● While loops are statements that iterate so long as a

given Boolean condition is met.

○ x (the variable determining whether or not the
condition is met) is defined and manipulated
OUTSIDE of the header of the while loop (while)

○ The condition (x < 5) is a statement containing a
Boolean variable.

○ break is a statement used to exit the current
for/while loop.

○ continue is a statement used to reject all
statements in the current for/while loop
iteration and return to the beginning of the
loop.

myString = input(“Enter a number: “)
myInt = int(myString)
x = 0
while x < 5:

print(myInt)
x= x +1

	Slide Number 1
	What is Python?
	Variables, Objects, and Classes �
	Variables, Objects, and Classes (cont.)�
	Basic Syntax Rules �
	Basic Syntax Rules �
	Basic Syntax Rules (cont.)
	Common Data Types and Operators
	Input/Output
	If-else Statements
	For Loops
	While Loops

