| Name: | | Date: | | | | | | | |---|---|---|--|--|--|--|--|--| | Natural and Urban "Stormwater" Water Cycles Handout | | | | | | | | | | | Instructions: Before the teacher's presentation begins, complete the left column by writing in your known answers or best guesses. | | | | | | | | | Slide # | During the presentation, complete the right column. After the pre- | From the Presentation | | | | | | | | Slide 1 | Our planet is covered by water, an astonishing percent! If the world was uniform all the way around, water would cover the planet to a depth of km, (miles). | Our planet is covered by water, an astonishing percent! If the world was uniform all the way around, water would cover the planet to a depth of km, (miles). | | | | | | | | Slide 2 | It would take years for that volume of water to go over the Niagara Falls. Our planet is years old. It takes the average American years to use the amount of water that flows over Niagara Falls every second. | It would take years for that volume of water to go over the Niagara Falls. Our planet is years old. It takes the average American years to use the amount of water that flows over Niagara Falls every second. | | | | | | | | Slide 3 | % of the water on our planet is considered fresh water. % trapped as polar ice, % fresh groundwater, and % in the planet's surface and atmosphere. That means ~ gallons are available per person per day. | % of the water on our planet is considered fresh water. % trapped as polar ice, % fresh groundwater, and % in the planet's surface and atmosphere. That means ~ gallons are available per person per day. | | | | | | | | Slide 4 | Civil and environmental engineers design systems to pump water from and sources to water treatment facilities and then to our homes. It is their job to provide drinking water and a sufficient of water. | Civil and environmental engineers design systems to pump water from and sources to water treatment facilities and then to our homes. It is their job to provide drinking water and a sufficient of water. | | | | | | | | Slide 5 | Civil and environmental engineers use the of to design treatment systems and must understand the occurring as a result of the reaction, in order to provide water that is safe to drink and release back into nature. | Civil and environmental engineers use the of to design treatment systems and must understand the occurring as a result of the reaction, in order to provide water that is safe to drink and release back into nature. | | | | | | | | Slide 6 | These engineers must have an -depth knowledge of the water cycle. List the different components of the water cycle: | These engineers must have an -depth knowledge of the water cycle. List the different components of the water cycle: | | | | | | | | Slide 7 | •: When water changes from a | When water changes from a | |----------|---|---| | | liquid to gas or vapor. Phase change: Heat from the sun creates energy that the bonds holding water molecules together. | liquid to gas or vapor. Phase change: Heat from the sun creates energy that the bonds holding water molecules together. | | Slide 8 | When water vapor changes from gaseous state (vapor) to the liquid phase. Phase change: Evaporated water vapor condenses in the atmosphere due to | When water vapor changes from gaseous state (vapor) to the liquid phase. Phase change: Evaporated water vapor condenses in the atmosphere due to | | Slide 9 | Condensed water vapor that falls to Earth as rain, snow or hail. Phase change: Water molecules combine with tiny particles that act as a nucleus to form cloud droplets. of collisions occur with other droplets until the mass of the droplet creates a fall velocity that is than the cloud updraft speed, resulting in rain, snow or hail. | Condensed water vapor that falls to Earth as rain, snow or hail. Phase change: Water molecules combine with tiny particles that act as a nucleus to form cloud droplets. of collisions occur with other droplets until the mass of the droplet creates a fall velocity that is than the cloud updraft speed, resulting in rain, snow or hail. | | Slide 10 | Movement of water into the media layer. Movement of water within the media layer. The combination of inorganic and/or organic earth materials (for example, sand, soil, mulch, compost, limestone, granite, gravel). | Movement of water into the media layer. Movement of water within the media layer. The combination of inorganic and/or organic earth materials (for example, sand, soil, mulch, compost, limestone, granite, gravel). | | Slide 11 | The flow of rainwater that occurs as a result of the precipitation rate exceeding the soil infiltration and percolation rate or as a result of impervious surfaces. Also generated from such as roofs, roads, and sidewalks. | : The flow of rainwater that occurs as a result of the precipitation rate exceeding the soil infiltration and percolation rate or as a result of impervious surfaces. Also generated from such as roofs, roads, and sidewalks. | | | Collects | ,, and, | • | Collects | ,, and, | |------------|---------------------------------|--|---|---------------------------------|--| | | as it travels down the stre | et and into the storm sewer. | | as it travels down the stre | eet and into the storm sewer. | | | | | | | | | Slide 12 | • | : The lateral or horizontal flow of | • | | : The lateral or horizontal flow of | | | water beneath the ground | d surface. | | water beneath the ground | d surface. | | | Groundwater levels are ty | pically the surface level at which you can | • | Groundwater levels are ty | pically the surface level at which you can | | | | or the level of a | | | or the level of a | | | Storm water replenishes t | the groundwater table and underground | • | Storm water replenishes t | the groundwater table and underground | | | aquifer through | - | | aquifer through | | | | of water, which then flow | s to streams, lakes and wells. | | | s to streams, lakes and wells. | | | · | | | | | | | • | : The process of plants absorbing water | • | | : The process of plants absorbing water | | Slide 13 | and nutrients from roots i | n order to grow. | | and nutrients from roots | in order to grow. | | | Phase change: Plants use: | the energy from the sun | • | Phase change: Plants use | the energy from the sun | | | () aı | nd to draw up | | () a | nd to draw up | | | water and nutrients and to | ransform inorganic nutrients into organic | | water and nutrients and t | ransform inorganic nutrients into organic | | | above-ground and below- | ground biomass. | | above-ground and below- | -ground biomass. | | | | | | | | | Slide 14 | • | : The process by which plants | • | | : The process by which plants | | Silue 14 | release water into the air. | | | release water into the air. | | | | In the fall, trees typically of | drop their leaves in order to | • | In the fall, trees typically of | drop their leaves in order to | | | | | | | | | | | n, an acre of corn can give off | • | | n, an acre of corn can give off | | | | ons of water per day. | | | ons of water per day. | | | | n, a large oak tree can give off | • | | n, a large oak tree can give off | | | gaild | ons of water per year. | | galio | ons of water per year. | | | | | | | | | Additional | notes and questions: | Urban "Stormwater" Water Cycle — Vocabulary and Definitions | | | |----------|--|--|--| | Slide 15 | surface water | | | | | impervious surface | | | | | pervious surface | | | | | wastewater | | | | | storm sewer | | | | | sanitary sewer | | | | | combined sewer | | | | | urban infrastructure | | | | Slide 16 | Your RAFT Assignment: Take on the role of a journalist to describe the journey through the urban water cycle—from a water droplet's point of view. You are a travel magazine journalist for <i>Urban Environment Weekly</i>. Your assignment this week is to follow the life of a drop of water as it makes its way through the urban environment. In your article, include all the descriptive details about whom the drop met and what it encountered along the way. | | |