Solving Exponential Equations

Solving Exponential Equations

- We can solve exponential equations using logarithms.
- By converting to a logarithm, we can move the variable from the exponent.
- Hint: We want to convert to a logarithm of base 10 or base e.
- Example: Solve $6^{3 \mathrm{x}}=81$
- Example: Solve $6^{3 x}=81$
- Solution:

$$
\begin{gathered}
\log \left(6^{3 x}\right)=\log (81) \\
3 \mathrm{x} \bullet \log (6)=\log (81) \\
\mathrm{x}=\log (81) / 3 \cdot \log (6) \\
\mathrm{x} \approx 0.8175
\end{gathered}
$$

- Example: Solve $9^{x-4}=7.13$
- Example: Solve $9^{x-4}=7.13$
- Solution:

$$
\begin{gathered}
\log \left(9^{x-4}\right)=\log (7.13) \\
x-4 \bullet \log (9)=\log (7.13) \\
x-4=\log (7.13) / \log (9) \\
x=\log (7.13) / \log (9)+4 \\
x \approx 4.894
\end{gathered}
$$

- Example: Solve $3^{2 x-2}=73^{x}$
- Example: Solve $3^{2 x-2}=73^{x}$
- Solution:

$$
\begin{gathered}
\log \left(3^{2 \mathrm{x}-2}\right)=\log \left(73^{\mathrm{x}}\right) \\
(2 \mathrm{x}-2) \cdot \log (3)=\mathrm{x} \bullet \log (73) \\
2 \mathrm{x} \cdot \log (3)-2 \log (3)=\mathrm{x} \bullet \log (73) \\
2 \mathrm{x} \cdot \log (3)-\mathrm{x} \bullet \log (73)=2 \log (3) \\
\mathrm{x}(2 \log (3)-\log (73))=2 \log (3) \\
\mathrm{x}=2 \log (3) /(2 \log (3)-\log (73)) \\
\mathrm{x} \approx-1.0497
\end{gathered}
$$

- Example: Solve $5^{4 \mathrm{x}}=73$
- Example: Solve $5^{4 x}=73$
- Solution:

$$
\begin{gathered}
\log \left(5^{4 x}\right)=\log (73) \\
4 \mathrm{x} \bullet \log (5)=\log (73) \\
\mathrm{x}=\log (73) / 4 \cdot \log (5) \\
\mathrm{x} \approx 0.6665
\end{gathered}
$$

