SECTION 3 WORKSHEET: DESIGNING YOUR SOLUTION

	Period:
	Date:

1. The objective of your custom solution is to have a boiling point of 224°F **and** to be the least expensive possible. Which solution (SALT or SUGAR) can meet both these objectives?

2. Now test the solution of your choice from 1 (remember to use 200 ml water) & record data in TABLE 1

Creating a Solution:

Name:

Step 1. Weigh solute and Record in Table 1 = Mass Solute

Step 2: Weight Empty beaker and Record in Table 1

Step 3: Add 200ml water to empty beaker , Weigh and Record in Table 1

Step 4: Calculate... Step 3 - Step 2 = <u>Mass Solvent</u> Record in Table 1

Step 5: Calculate... Step 1 + Step 4 = $\underline{Mass Solute} + \underline{Mass Solvent} = \underline{Mass Solution}$ Record in Table 1

Step 6: Calculate... $\frac{\text{Mass Solute}}{\text{Mass Solution}} \times 100 = \frac{\text{Concentration}}{\text{Record in Table 1}}$

Boiling Point Testing:

Step 7: Make a foil lid for beaker (use a rubber band to secure over beaker)

Step 8: Make a small hole in lid for the thermometer to be inserted.

Step 9: Place beaker solution on burner and wait for it to boil. Boiling is described by a rapid and continuous boiling.

Step 10: Record the boiling temperature in **TABLE 1**; make sure thermometer is not touching sides of beaker.

Step 11: Drain, rinse, and dry beaker.

Step 12: 10. Calculate your error in the boiling point and Record in TABLE 1

% Error =
$$\frac{\text{Actual Boiling Temperature - } 224^{\circ}F}{224^{\circ}F} \times 100\%$$

TABLE 1:

	Mass	Mass	Mass	Mass	Mass	Concentration	Boiling	Cost	Error
	Solute	Empty	Beaker + H ₂ 0	Solvent	Solution	(%)	Point	(\$)	(%)
	(gram)	Beaker	(gram)	(gram)	(gram)		(°F)		
		(gram)							
	STEP 1	STEP 2	STEP 3	STEP 4	STEP 5	STEP 6	STEP 10		<i>STEP 12</i>
Test									
1									
Test									
2									
Test									

3					
5					

3. Record your Names, if you used a SALT or SUGAR solution, % Error, and Cost on the board.

4. Optional if there is still time... Try again to create a solution with a boiling point of 224°F

5. Optional if there is still time... Try again to create a solution with a boiling point of 224°F and uses <u>both</u> SALT and SUGAR

a. How could you determine how much of each solute you would need?

b. Mass Salt =_____ g

Mass Sugar =_____ g

Concentration = _____ %

Total Cost = \$_____