Name: \qquad Period: \qquad
Date: \qquad

1. The objective of your custom solution is to have a boiling point of $224^{\circ} \mathrm{F}$ and to be the least expensive possible. Which solution (SALT or SUGAR) can meet both these objectives?
2. Now test the solution of your choice from 1 (remember to use 200 ml water) \& record data in TABLE 1

Creating a Solution:

Step 1. Weigh solute and Record in Table 1= Mass Solute
Step 2: Weight Empty beaker and Record in Table 1
Step 3: Add 200 ml water to empty beaker, Weigh and Record in Table 1
Step 4: Calculate... Step 3 - Step $2=\underline{\text { Mass Solvent }}$ Record in Table 1
Step 5: Calculate... Step $1+$ Step $4=\underline{\text { Mass Solute }}+\underline{\text { Mass Solvent }}=\underline{\text { Mass Solution }}$ Record in Table 1
Step 6: Calculate... $\frac{\text { Mass Solute }}{\text { Mass Solution }} \times 100=\underline{\text { Concentration }}$ Record in Table 1
Boiling Point Testing:
Step 7: Make a foil lid for beaker (use a rubber band to secure over beaker)
Step 8: Make a small hole in lid for the thermometer to be inserted.
Step 9: Place beaker solution on burner and wait for it to boil. Boiling is described by a rapid and continuous boiling.
Step 10: Record the boiling temperature in TABLE 1; make sure thermometer is not touching sides of beaker.
Step 11: Drain, rinse, and dry beaker.
Step 12: 10. Calculate your error in the boiling point and Record in TABLE 1

$$
\% \text { Error }=\frac{\text { Actual Boiling Temperature }-224^{\circ} \mathrm{F}}{224^{\circ} \mathrm{F}} \times 100 \%
$$

TABLE 1:

	Mass Solute (gram)	Mass Empty Beaker (gram)	Mass Beaker + H20 (gram)	Mass Solvent (gram)	Mass Solution (gram)	Concentration $\mathbf{(\%)}$	Boiling Point $\left({ }^{\circ} F\right)$	Cost $\mathbf{(\$)}$	Error $\mathbf{(\%)}$
	STEP 1	STEP 2	STEP 3	STEP 4	STEP 5	STEP 6	STEP 10		STEP 12
Test 1									
Test 2									
Test									

| 3 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3. Record your Names, if you used a SALT or SUGAR solution, \% Error, and Cost on the board.
4. Optional if there is still time... Try again to create a solution with a boiling point of $224^{\circ} \mathrm{F}$
5. Optional if there is still time... Try again to create a solution with a boiling point of $224{ }^{\circ} \mathrm{F}$ and uses both SALT and SUGAR
a. How could you determine how much of each solute you would need?
b. Mass Salt $=$ \qquad g

$$
\text { Mass Sugar }=
$$

Concentration $=$ \qquad \% Total Cost $=\$$ \qquad

