Eureka – Archimedes Principle Worksheet 2 Name_____

Discovering buoyant force (volume of water displaced) and calculating what displacement volume is needed to float a boat.

Your group will need: 1 scale, 1 graduated cylinder, collection of plastic bottle boats filled with various materials (water, oil, glass marbles, and steel marbles), 1 sheet of aluminum foil, 1 worksheet per student, and results from Part I.

You will need to record the densities for all of the material you have (some of these values you can get from the data that other groups calculated).

Material: <u>Water</u> Density: <u>1 g/cm³</u>

Material: _____ Density: _____

Material: _____ Density: _____

Material: _____ Density: _____

Measure the weight of each of the boats and record it below:

Material: <u>Water</u> Weight: _____

Material: _____ Weight: _____

Material: _____ Weight: _____

Material: _____ Weight: _____

Put the water filled boat into the graduated cylinder and record the displacement here.

Displacement Volume: _____

How does this compare with the volume of water in the boat?

Now predict how much water each of the other boats will displace.

Material: _____ Displacement Volume: _____

Material: _____ Displacement Volume: _____

Material: _____ Displacement Volume: _____

Now put each boa	t in the graduated cylinder and record the displacement here.
Material:	Displacement Volume:
Material:	Displacement Volume: Displacement Volume:
Did it agree with y	wr predictions? W/by do you think it did or did pot?
Calculate the appa volume). Note: this	arent density of the boat hull under water (weight of boat/displace
Calculate the appa volume). Note: this Material: <u>Water</u>	arent density of the boat hull under water (weight of boat/displace is the average density of the boat hull, air, and inner material. Displacement Volume:
Calculate the appa volume). Note: this Material: <u>Water</u> Material:	arent density of the boat hull under water (weight of boat/displace is the average density of the boat hull, air, and inner material. Displacement Volume: Displacement Volume:
Calculate the appa volume). Note: this Material: <u>Water</u> Material:	arent density of the boat hull under water (weight of boat/displace is the average density of the boat hull, air, and inner material. Displacement Volume: Displacement Volume:
Calculate the appa volume). Note: this Material: <u>Water</u> Material: <u>Water</u> Material: <u></u>	arent density of the boat hull under water (weight of boat/displace is the average density of the boat hull, air, and inner material. Displacement Volume: Displacement Volume: Displacement Volume: Displacement Volume:

Try floating the boat in both orientations. What are the displacement volumes?

Now measure the volume of the aluminum foil sheet and record this below.

Length: _____ Width: _____ Height: _____ Volume: _____

Density (from part 1):

Does the aluminum foil sheet float?

Now fold the aluminum sheet into a boat hull shape and put on the water. Does it float? _____ Why does it float now?

Final Project

Your group can now calculate the displacement of some big ships (car ferry, wheat barge, or oil tanker). Using resources (internet, engineering book or information from teacher), gather necessary data for design parameters for your ship. Calculate the displacement volume for your ship for dry weight (empty) and maximum load. Assuming a barge bottom (rectangular or trapezoidal) calculate the dimensions of the hull below the water line. Present the group findings to the class. **SHOW ALL WORK and EXPLAIN how understanding these principles of materials can help engineers in the design of a boat.**