Eureka - Archimedes Principle Worksheet 2 Name \qquad
Discovering buoyant force (volume of water displaced) and calculating what displacement volume is needed to float a boat.

Your group will need: 1 scale, 1 graduated cylinder, collection of plastic bottle boats filled with various materials (water, oil, glass marbles, and steel marbles), 1 sheet of aluminum foil, 1 worksheet per student, and results from Part I.

You will need to record the densities for all of the material you have (some of these values you can get from the data that other groups calculated).
Material: Water Density: $\quad 1 \mathrm{~g} / \mathrm{cm}^{3}$
Material: \qquad Density: \qquad
Material: \qquad Density: \qquad
Material: \qquad Density: \qquad

Measure the weight of each of the boats and record it below:
Material: Water Weight: \qquad
Material: \qquad Weight: \qquad
Material: \qquad Weight: \qquad
Material: \qquad Weight: \qquad

Put the water filled boat into the graduated cylinder and record the displacement here.
Displacement Volume: \qquad
How does this compare with the volume of water in the boat?

Now predict how much water each of the other boats will displace.
Material: \qquad Displacement Volume: \qquad
Material: \qquad Displacement Volume: \qquad
Material: \qquad Displacement Volume: \qquad

Explain your predicted amounts. What is your reason and how did you arrive at this?

Now put each boat in the graduated cylinder and record the displacement here.
Material: \qquad Displacement Volume: \qquad
Material: \qquad Displacement Volume: \qquad
Material: \qquad Displacement Volume: \qquad

Did it agree with your predictions? \qquad Why do you think it did or did not?

Calculate the apparent density of the boat hull under water (weight of boat/displacement volume). Note: this is the average density of the boat hull, air, and inner material.
Material: Water Displacement Volume: \qquad
Material: \qquad Displacement Volume: \qquad
Material: \qquad Displacement Volume: \qquad
Material: \qquad Displacement Volume: \qquad

How does this quantity compare to the density of water? Why is this?

Will the displacement change if your boat is floating upright or lying on its side? Why?
\qquad

Try floating the boat in both orientations. What are the displacement volumes?

Length: \qquad Width: \qquad Height: \qquad
Volume: \qquad
Density (from part 1): \qquad

Does the aluminum foil sheet float?

Now fold the aluminum sheet into a boat hull shape and put on the water.
Does it float? \qquad Why does it float now?

Final Project

Your group can now calculate the displacement of some big ships (car ferry, wheat barge, or oil tanker). Using resources (internet, engineering book or information from teacher), gather necessary data for design parameters for your ship. Calculate the displacement volume for your ship for dry weight (empty) and maximum load. Assuming a barge bottom (rectangular or trapezoidal) calculate the dimensions of the hull below the water line. Present the group findings to the class. SHOW ALL WORK and EXPLAIN how understanding these principles of materials can help engineers in the design of a boat.

