Strength of Materials Math Worksheet

1. Calculate the maximum tensile and compressive forces allowed for the cross-sectional area shown in Figure 1. The maximum tensile strength is $500 \mathrm{lb} / \mathrm{in}^{2}$ (pounds per inches squared). The maximum compressive strength is $5,000 \mathrm{lb} / \mathrm{in}^{2}$. Use the following equations to complete the problem. Show your work and calculations.
cross-sectional area $=(B) \times(L)$
maximum tensile force $=$ (maximum tensile strength) \times (cross-sectional area)
maximum compressive force $=$ (maximum compressive strength) \times (cross-sectional area)

$$
B=10 \text { inches }
$$

Figure 1: Cross-sectional area.
2. Calculate the maximum tensile and compressive forces allowed for the following two crosssectional areas shown in Figure 2. The maximum tensile strength is $3,750 \mathrm{lb} / \mathrm{in}^{2}$. The maximum compressive strength is $4,850 \mathrm{lb} / \mathrm{in}^{2}$. Use the following equations along with those in \#2 to complete the problem. Show your work and calculations.
cross-sectional area $=\pi \times(\text { radius })^{2}$

Radius $=10$ inches
$\pi=3.14$

Figure 2: Cross-sectional areas.
3. Part 1: Calculate the compressive force for the cross-sectional area shown in Figure 3. The original length of the member was 100 -in long. After applying the compressive force, the member was $99-\mathrm{in}$ long. The modulus of elasticity for the material used in the cross section is $10,000 \mathrm{lb} / \mathrm{in}^{2}$. Use the following equations along with those in \#2 and \#3 to complete the problem. Show your work and calculations.

Part 2: Calculate the tension force for the cross-sectional area shown in Figure 3. The original length of the member was 100-in long. After applying the tensile force, the member was 103 -in long. The modulus of elasticity for the material used in the cross section is the same as in \#2 above. Use the following equations along with those in \#2 and \#3 to complete the problem. Show your work and calculations.
$\sigma=E^{*} \varepsilon$
$\varepsilon=$ change in length / original length

$$
\sigma=\text { stress }
$$

$\mathrm{E}=$ modulus of elasticity
change in length $=$ (length after force applied) - (original length)
If the change in length is negative, take the absolute value to get a positive number force $=\sigma$ * cross-sectional area

Figure 3: Cross-sectional area.

