Viscous Fluids

Viscous Fluids

- Viscosity is how engineers measure the resistance of fluids when being deformed:

$$
\tau=\mu(\mathrm{du} / \mathrm{dy})
$$

- The less viscous the fluid, the greater its ease of movement.
- Viscosity is useful for calculating the force needed to move a fluid. For example, in these industries:
○ petroleum
\bigcirc printing
○ food and beverages

Measuring Viscosity: Rheometer

Fluid Behavior: Newtonian

Newtonian identified by

- linear behavior
- constant viscosity that is independent of velocity

0 Slope is defined as the viscosity

- Examples:

ค water

- gasoline

○ most gases

Rate of shearing strain, $\frac{d u}{d y}$

Fluid Behavior: shear thinning

0 Shear thinning identified by: viscosity decreases as velocity increases

- Scientists do not fully understand what causes this phenomenon
- Examples:

○ ketchup
) whipped cream
ก paint
ค motor oil

Fluid Behavior: shear thickening

0 Shear thickening identified by: viscosity increases as velocity increases

○ Due to closely packed particles that are combined with enough fluid to fill the space between them

- Examples:

O body armor
○ viscous coupling unit (traction control)
○ cornstarch

Fluid Behavior: Bingham plastic

0 Bingham plastic behaves as a solid at low stresses, but flows as a viscous fluid at high stresses

O Due to particles in material having weak bonds that can be broken, allowing material to flow. Yet, when stress is gone, the bonds form again.

- Example:
toothpaste

