Teach Engineering Home Page
Login |Your Account


Hands-on Activity: Sneaking Up on Sneakers
Contributed by: Making the Connection, Women in Engineering Programs and Advocates Network (WEPAN)

Summary

Students explore why different types of sneakers are used in a variety of common sports, and how engineers analyze design needs in sneakers and many other everyday items. The goal is for students to understand the basics of engineering associated with the design of athletic shoes. The design of footware based on how it will be used involves bioengineering. Students analyze the foot movements in a variety of sports, develop design criteria for a specific sport, and make recommendations for requirements for the sneakers used in that sport.

Engineering Connection

Engineering analysis or partial design

Bioengineers are involved in the design of sneakers. They combine their knowledge of the human body with mechanical engineering and materials science to design sneakers that aid athletic performance. The shoes must provide the right type of support and traction needed for the intended sport while also taking into consideration their appearance.

Contents

  1. Learning Objectives
  2. Materials
  3. Introduction/Motivation
  4. Vocabulary
  5. Procedure
  6. Attachments
  7. Investigating Questions
  8. Assessment
  9. Extensions
  10. Activity Scaling

Grade Level: 3 (3-4) Group Size: 2
Time Required: 55 minutes
  • Part A: 10 minutes per sport, 5 minute summary
  • Part B: 20 minutes
  • Part C: 20 minutes
Activity Dependency :None
Expendable Cost Per Group
Keywords:
My Rating:
Avg Rating:
Not Yet Rated.
Teacher Experiences  |  Share your experience!

Related Curriculum :

subject areas Science and Technology

Educational Standards :    

Does this curriculum meet my state's standards?       

Learning Objectives (Return to Contents)

After this activity, students should be able to:

  • Analyze a product's components and functions.
  • Recognize a design need or engineering challenge and define the associated design criteria and constraints.
  • Communicate a design solution through drawing or speaking.

Materials List (Return to Contents)

4 of the following set-ups:
  • basketball hoop and ball
  • baseball bat
  • area to jog in
  • soccer field and net
  • track and field events (running, long jump)
Each group needs:
  • paper, pencils, and pens
  • shallow baking pan, large enough to step into with one foot
  • water to put into the baking pan
  • green or red construction paper
  • paper towels to dry feet
  • (optional) inexpensive canvas sneakers or other athletic shoes

Introduction/Motivation (Return to Contents)

Sneakers are one of the most commonly worn shoes in our culture. They provide comfortable support for our feet as we go about our active lives as students, athletes, educators and engineers. The design of sneakers (and all athletic shoes) is based on how they will be used and is one type of bioengineering.
Do you own a pair of sneakers? Maybe more than one pair? (Listen to student answers.) Do you have a special pair of shoes that you use for a certain sport? Do those shoes make a difference in how you perform that sport? Well, think about that during our activity today.
Today, you are bioengineers who have been asked by the Active Sports Shoe Company to help design a new line of shoes for a variety of sports.
First, we will explore foot motion in sports. To do this, you will participate in a variety of different sports, observing and discussing the differences in foot motions and shoe features and requirements that would make them more effective for the athletes. Then, you will learn more about feet by taking a closer look at your own.
With all this new information, you will be better prepared to give recommendations for how to improve a sneaker for a specific sport, and maybe even create your own sneaker design!

Vocabulary/Definitions (Return to Contents)

traction: Adhesive friction, such as tires on a road.
flexibility: Easily bent.
friction: Resistance of motion between two touching surfaces.
support: To keep from slipping, to hold up.
cushioning: Absorbing of shock (sudden force).
Background
The design of today's sneakers is an engineering science that combines physics and biomechanics. Engineering design utilizes materials that provide durability, comfort, cushioning and stability. Good designs also consider the type of foot (female, male, child) since each has different characteristics. Another component in the design is the consideration of which sport the shoe will be used to play. Each sport has different footwear requirements. Some need high flexibility, others maximum cushioning or high levels of friction. In addition, the foot structure is considered as well. Women's feet have a different shape than men's feet and children's feet are shaped differently than adult feet. The inside layout of a well-designed sneaker takes these physical differences into account.
Sneakers originated in 1908 and were comprised of rubber soles with canvas uppers. The Keds™ brand was introduced in 1917. In 1922, the idea to create different models for different needs was introduced. The health and fitness movement of the 1970s created a high demand for sneakers by the public, and in 1979 the concept of cushioning air bubbles in the sole was introduced. Since then, advancing capabilities and creation of new materials has resulted in highly specialized (and expensive) sneakers.
With the Students
Part A: Exploring Foot Motion in Sports
  1. Present the sports available for today's activities and have students discuss the most common foot motions used in the sports.
  2. Have 2-3 students do a sport one at a time. They can shoot baskets, swing a baseball bat, jog, dribble a soccer ball, or do track or field events such as the long jump. As each student participates, have the rest of the groups observe the actual motions. Answer questions such as:
  • How do their feet move?
  • If your sneaker could have special qualities for that sport what would they be?
  • What suggestions do you have for how their shoes could be changed to match the movements for that sport?
  1. After all students have tried a sport, have them compare the motions they predicted would be most common to the ones they observed happening.
  2. Lead a discussion focused on what type of properties the sneaker should have to be best for this sport. Should it be flexible or stiff, slippery or sticky, bouncy or firm? Refer to the attached "What Makes Up Your Sneaker?" diagram that introduces some terminology and features commonly associated with the design of athletic shoes.
  3. Have students do the sport again, with the rest of the group calling out what would be good for the sneaker to be doing as the sport example plays out in front of them. Have one team member record observations and ideas for each sport.
  4. Move to the next sport and repeat.
  5. After all the sports have been done, have students discuss the differences between them. How do the motions differ? What qualities are needed in the sneaker to help these motions? List these ideas and label as design criteria.
  6. Select one sport. With the ideal sneaker in mind, choose the person in your group who is wearing sneakers most like the ideal one. Have this student try the activity, discussing how easy or difficult different parts of it are such as starting, stopping, turning and jumping.
  7. Have students compare shoes. (optional) Pass around the inexpensive canvas sneaker (and other athletic shoes such as soccer cleats). Compare shoes among classmates. How are the bottoms different? Smoother? Rougher? How does the amount of cushioning and support compare? What does the group think is the advantage(s) of each particular shoe feature?
  8. Conclude with a discussion about how the students acted as engineers.
Part B: Exploring Your Own Feet
  1. Have students each remove a shoe and sock from one foot and step onto a blank piece of red or green construction paper.
  2. Trace around the outside of the bare foot with a pen.
  3. Have each student bring his or her foot tracing to a location where a baking pan is placed on the floor with about a half-inch of water in it. Have students step into the water with their bare foot, shake off the drips (to create a clearer image), and then place the wet foot inside their traced outline.
  4. Lead a discussion about in what ways the wet footprint looks different and similar to the traced outline. Why might both images be important in sneaker design?
Part C: Create Your Own Sneaker Design
Have teams select any sport (not just the ones done for this activity) and each draw a picture of the ideal footwear for that sport. Have students list the design criteria for the selected sport. Discuss how the design criteria differ between sports. Require that they include descriptions of their footwears' qualities and their benefits to athletes. Incorporate design constraints by asking students what sort of budget they would need to build their shoe design. Could they do it with a 100 dollar budget? Share ideas via a guided class discussion or large drawing on a board.

Investigating Questions (Return to Contents)

  • What part of a sneaker responds to and is made to create friction? (The sole or bottom of the sneaker.)
  • Is the cushioning important for all sports? (No. Some sports require high flexibility or high tactile sense, such as dance and tightrope walking.)
  • Why do some sneakers have smoother bottoms than others? (Smoother bottoms provide more contact area with the floor, which is an advantage on smooth courts, such as basketball courts.)
Pre-Activity Assessment
Observe class participation in discussion on common motions used in sports.
Activity Embedded Assessment
Observe student participation within groups.
Post-Activity Assessment
Have students write-up their sneaker designs explaining the reasons for each recommended feature.

Activity Extensions (Return to Contents)

Make a list of sports that have similar types of foot motions. Do these sports need the same kind of shoes or different ones? Why?
Examine the sneakers worn by students in the class. Make a list of sports that each student's sneaker would be best suited for.

Activity Scaling (Return to Contents)

For more advanced students, have them research the materials used to make sneakers.

Contributors

M. Cyr, Worcester Polytechnic Institute, project funded by Lucent Technologies Foundation

Copyright

© 2001 by WEPAN. All rights reserved.

Supporting Program (Return to Contents)

Making the Connection, Women in Engineering Programs and Advocates Network (WEPAN)

Last Modified: July 29, 2014
K12 engineering curriculum K-12 engineering curricula K12 engineering curricula K-12 engineering activities K12 engineering activities K-12 engineering lessons K12 engineering lessons Engineering for children Engineering activities for children K-12 science activities K12 science activities K-12 science lessons K12 science lessons K12 engineering K-12 engineering K-12 engineering education K12 engineering education Are you a bot?
Use of the TeachEngineering digital library and this website constitutes acceptance of our Terms of Use and Privacy Policy.