Chemical and biological engineers harness organic and inorganic forms of matter to improve the world. Whether it's optimizing the composition of a substance or developing new products that are stronger and more reliable, chemical and biological engineers develop exciting new technologies for a variety of industries, including energy, agriculture, and environmental science.

Where do Chemical & Biological Engineers Work?
Chemical and biological engineers work in a variety of organizations, including:
- National research labs
- Pharmaceutical companies
- Industrial manufacturing
- Food engineering research

Explore Our Chemical & Biological Curriculum

Grades 3-5:
- Acid Attack
- Stretching to Compare Properties: The Plastic Test
- Acid Rain Effects

Grades 6-8:
- Red Cabbage Chemistry
- Chromatography Lab
- Edible Algae Models

Grades 9-12:
- Bio-Engineering: Making and Testing Model Proteins
- Bridging to Polymers: Thermoset Lab
- Creepy Silly Putty

Chemical & biological engineering spans many disciplines, but is generally broken into a few subfields:
- Chemistry, chemical processes, petrochemical engineering, nanotechnology, plastics, materials engineering biology, biochemical engineering, environmental health engineering, bioinformatics

What do Chemical & Biological Engineers Study?
Chemical and biological engineers work to solve challenges involving chemical, biological, and physical phenomena. Areas of academic study include a range of natural sciences and systems, such as human physiology, plant biology, environmental science, organic and physical chemistry, depending on the topic of focus, and a focus on key engineering concepts such as mass balances, properties of materials, computer modeling and product design.

Keep creating at TeachEngineering.org