
Name:	Date:	Class:
Name.	Date.	Ulass.

Pod Racer Activity Workbook Example

Experiment #1

Using the "gearing up" pod racer

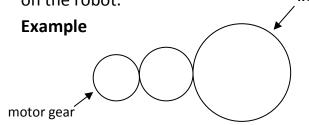
 Use the space below to draw, to the best of your ability, the arrangement of the gears on the robot.

- 2. On your drawing, **identify** the gear directly connected to the motor. Draw an arrow to the gear and label "**motor gear**."
- 3. On your drawing, **identify** the gear directly connected to the wheel. Draw an arrow to the gear and label "wheel gear."
- 4. With your groups, carry out the following experiments.
 - a. Turn ON your pod racer, and pick the following:

My Files → Software files → pod_racer → Run

- b. GENTLY PLACE the racer on the floor by the starting line. Make sure the touch sensor is touching the floor.
- c. DECIDE on the start and finish lines for your race.
 - **2-3** members of your group should be at the start line.
 - **2-3** members of your group should be at the finish line, ready to lift the robot off the group when it crosses.
- d. When you are ready to race, PRESS the ORANGE ENTER button
- e. LIFT the racer off the ground immediately after crossing the finish line.
- f. RECORD your distance, time, and speed results in the table below.

Results Table #1


Test #	Distance Traveled (in inches)	Time Traveled (in seconds)	Average Speed (in inches per second)
1	22	2	11
2	24	2	12
3	26	2	13
4	22	2	11
5	14	2	7
6	26	2	13
7	24	2	12
8	24	2	12

Experiment #2

Using the "gearing down" pod racer

1. Use the space below to draw, to the best of your ability, the arrangement of the gears on the robot.

wheel gear

- 2. On your drawing, **identify** the gear directly connected to the motor. Draw an arrow to the gear and label "**motor gear**."
- 3. On your drawing, **identify** the gear directly connected to the wheel. Draw an arrow to the gear and label "wheel gear."
- 4. With your groups, carry out the following experiments.
 - a. Turn ON your pod racer, and pick the following:

My Files → Software files → pod_racer → Run

- b. GENTLY PLACE the racer on the floor by the starting line. Make sure the touch sensor is touching the floor.
- c. DECIDE on the start and finish lines for your race.
 - **2-3** members of your group should be at the start line.
 - **2-3** members of your group should be at the finish line, ready to lift the robot off the group when it crosses.
- d. When you are ready to race, PRESS the ORANGE ENTER button
- e. LIFT the racer off the ground immediately after crossing the finish line.
- f. RECORD your distance, time, and speed results in the table below.

Results Table #2

Test #	Distance Traveled (in inches)	Time Traveled (in seconds)	Average Speed (in inches per second)
1	20	5	4
2	18	6	3
3	16	4	4
4	10	5	2
5	24	6	4
6	20	5	4
7	15	3	5
8	18	6	3

Experiment #3

Using BOTH racers

- 1. ADD the same amount of weight to each of the racers.
- 2. RUN the **pod_racer** program again.
- 3. RECORD your observations below. Is one racer able to travel with weight added? Is one racer **NOT** able to travel with weight added?
- 4. Continue to add weight to both racers until one is unable to move forward. Which robot is capable of moving with more weight?

Observation 1

Both racers can move with 80 weights attached.

Observation 2

Both racers can move with 113 weights attached.

Observation 3

Only Racer #2, "gearing down" racer, is able to move with 200 weights attached.

Conclusions/Reflections

Which racer – "gearing up" or "gearing down" – went faster?
 Gearing up racer went faster.

had a little gear attached to a big gear to make it go slower.

- What made the racers perform at different speeds?
 The racers performed differently because of the different ways we used gears.
 Gearing up had a big gear attached to a little gear to make it go faster. Gearing down
- 3. What was the **approximate** <u>difference</u> in speeds between the two pod racers? SHOW your work.

Gearing up 11+12+13+11+7+13+12+12 = 91 91/8 = 11.375 average speed

Gearing down 4+3+4+2+4+4+5+3 = 29 29/8 = 3.625 average speed

11.375-3.625 = 7.75 speed difference

Units: inches per second ← extra credit for remembering to include

4. Write **2** ways to make the "gearing up" racer go FASTER.

Gearing up can go faster by

- 1) Making the small gear smaller
- 2) Making the big gear bigger