

What is a polymer?

Developed by Cherelle Bishop, Department of Chemistry, Colorado State University. This work is based upon collaborative work supported by a National Science Foundation Grant No. 0841259; Colorado State University, Thomas Chen, Principal Investigator, Michael A. de Miranda and Stuart Tobet Co- Principal Investigators. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation

Polymers that you know....

Polycarbonate

Polystyrene

Polyacrylamide

Polyethylene

Polyurethane

Poly(vinyl chloride)

Entrational and the second of the second of

But what is a polymer....

Polymers that you know....

Polycarbonate

Polyacrylamide

Polystyrene

Polyethylene

Н

Ή.

who

.ċ.m

n

Poly(vinyl chloride)

Polyurethane

Silly Putty experiment

Η

Η

• Basic building block for polymer synthesis

ΟH

HO

• Linkers that chemical bond polymer chain together

OH

How does a cross-linker work?

Cross-linker affect on material properties

No Cross-links

- No chains linked together
- Larger range of motion available to some chains→ more bouncy

With Cross-links

- More chains linked together
- Increasing stiffness
- Less range of motion available
 → rigid and stiff