Pre-Activity Problem Set Answer Key

Answer the following questions.

1. What is the chemical equation for complete combustion?

Fuel + $O_2 \rightarrow CO_2 + H_2O$

- 2. What pollutants might result if incomplete combustion is occurring? CO, VOCs, particulate matter (and still CO₂ and H₂O)
- 3. Is NOx formed from the fuel itself? If not, where does it come from? Thermal NOx is formed form the N_2 already present in the air (air $\sim 21\% O_2$ and $79\% N_2$).
- 4. Which fuel has a higher energy content?

Gasoline

or

Answer the following questions using the example data in the table below.

Independent Variables			Dependent Variables (concentrations observed at tailpipe)		
Fuel	Formula	Combustion temperature (°C)	CO ₂ (ppm)	VOC (ppm)	NOx (ppm)
Case 1: Gasoline	C ₈ H ₁₈	1500	3000	30	20
Case 2: Diesel	C ₁₂ H ₂₃	1900	3000	50	40
Case 3: Ethanol	C ₂ H ₅ OH	1500	4000	10	20

- 5. What is similar about the chemical formulas for all of the fuel sources? All contain carbon and hydrogen.
- 6. What is different about ethanol, and why might that difference result in lower VOCs? Ethanol has oxygen in the fuel, which facilitates more complete combustion and therefore fewer VOCs.
- 7. Which requires more oxygen to reach complete combustion? Gasoline or diesel? And, why? Diesel, because it contains more carbon, or a higher carbon/hydrogen ratio; you need two oxygens for each carbon to get to CO₂.
- 8. Which fuel type results in the most NOx and why? Diesel, because of the higher combustion temperature.

9. In the following table, circle the A or B that best completes the row. Then explain your rationale.

Claim	Evidence	Reason	
Vehicle 1 produces more total pollutants than vehicle 2.	We observe higher CO ₂ and higher VOCs in the vehicle 1 data.	A. Vehicle 1 has an older engine. B. Vehicle 1 has a larger engine.	
Vehicle 2 exhibits more complete combustion than vehicle 1.	A.) We observe more VOCs from vehicle 1 than vehicle 2. B. We observe more VOCs from vehicle 2 than vehicle 1.	Vehicle 2 is newer and operating more efficiently, therefore it is displaying more complete combustion.	
A. The combustion in vehicle 1 is hotter. B. The combustion in vehicle 2 is hotter.	We observe more NOx from vehicle 1 than vehicle 2.	Vehicle 1 has a diesel engine.	

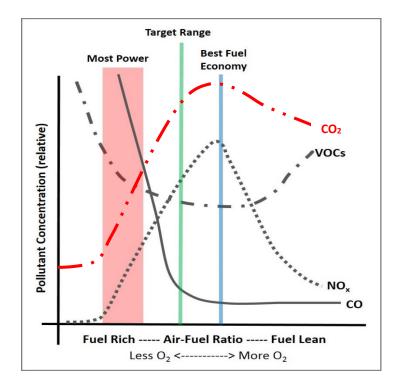
Explanations

Row 1: A larger engine uses more fuel, which results in more overall emissions, while an older engine may run poorly and may exhibit more incomplete combustion, but not necessarily more emissions.

Row 2: More incomplete combustion leads to more VOCs.

Row 3: Diesel engines run at a hotter temperature and typically produce more NOx.

Name:


Date: Class:

CHALLENGE QUESTION

10. To the air-fuel ratio plot on the right, add a line for CO₂.

Explanation of CO₂ line placement (the red line). Moving from left to right:

- 1. To begin with, CO₂ will be at a minimum.
- 2. It will increase as more O₂ is added.
- 3. It will plateau as CO reaches a minimum (and achieves more complete combustion).
- 4. As the VOCs increase, the CO₂ decreases slightly.

