In a Row Math Worksheet Answers

1. Draw a circuit diagram for a circuit that has one battery and two light bulbs connected in series.

2. For the above circuit, one bulb has a resistance of 2Ω and a second bulb has a resistance of 3Ω. The total resistance for two bulbs in series is equal to the sum of their resistances.

$$
\text { Use this equation to find the total resistance of the circuit: } R_{\text {total }}=R_{1}+R_{2}
$$

2 Ohms + 3 Ohms = 5 Ohms
3. For a circuit that has one battery and two light bulbs connected in series, one bulb has a resistance of 1Ω, and the total resistance of the circuit is 6Ω. What is the resistance of the second light bulb?

6 Ohms-1 Ohm = 5 Ohms
4. If a circuit has two 1.5 V batteries in series, what is the voltage across the two batteries?
$1.5 \mathrm{~V}+1.5 \mathrm{~V}=3.0 \mathrm{~V}$
5. If a circuit has two 1.5 V batteries in series and one 3Ω light bulb, what is the current in the circuit?
$1.5 \mathrm{~V}+1.5 \mathrm{~V}=3.0 \mathrm{~V}$
3.0 V / 3 Ohms = 1 Ampere

$$
\begin{aligned}
& \text { Use the Ohm's law equation: } I=\frac{V}{R} \\
& I=\text { current (in amps) } \\
& V=\text { voltage (batteries used) } \\
& R=\text { resistance (bulbs used) }
\end{aligned}
$$

