\qquad

1. What is the mass of your weight?

$$
m=\ldots \mathrm{kg}
$$

2. Choose a height, h, between $15-40 \mathrm{~cm}(.15-.4 \mathrm{~m})$.

$$
h=
$$

\qquad m
3. Calculate the potential energy of your weight at the chosen height Remember, $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{gathered}
P E=m \cdot g \cdot h \\
P E= \\
\mathrm{J}
\end{gathered}
$$

Calculate the theoretical velocity, V_{t}, of your weight at the bottom of the swing. Remember, all of the potential energy will turn into kinetic energy.

$$
\begin{aligned}
& K E=1 / 2 \cdot \mathrm{~m} \cdot V_{t}^{2} \\
& V_{t}=\quad \quad \mathrm{m} / \mathrm{s}
\end{aligned}
$$

5. Record the distance between the two tape markers.

$$
\text { distance }=\ldots \quad \mathrm{m}
$$

6. Record four time trials

\mathbf{t}_{1} (sec)	$\mathbf{t}_{\mathbf{2}}$ (sec)	time $\left(\mathbf{t}_{2}-\mathbf{t}_{\mathbf{1}}\right)$

7. Calculate your average time

$$
t_{\text {ave }}=\ldots \mathrm{sec}
$$

8. Calculate your measured velocity, V_{m}.

$$
\begin{aligned}
& V_{m}=\text { distance } \div t_{\text {ave }} \\
& V_{m}=\quad \mathrm{m} / \mathrm{s}
\end{aligned}
$$

9. How close are the theoretical and measured velocities?
