Swinging Pendulum Worksheet

1. What is the mass of your weight?

m = ____kg

2. Choose a height, h, between 15 - 40 cm (.15 - .4 m).

h = _____m

3. Calculate the potential energy of your weight at the chosen height *Remember*, $g = 10 \text{ m/s}^2$.

 $PE = m \cdot g \cdot h$

 $PE = ___J$

4. Calculate the theoretical velocity, V_t , of your weight at the bottom of the swing. *Remember, all of the potential energy will turn into kinetic energy.*

$$KE = \frac{1}{2} \cdot m \cdot V_t^2$$
$$V_t = \sqrt{\frac{2 \cdot KE}{m}}$$

$$V_t = ___m/s$$

5. Record the distance between the two tape markers.

distance = ____m

6. Record four time trials

t_1 (sec)	t_2 (sec)	time $(t_2 - t_1)$

7. Calculate your average time

 $t_{ave} = ___sec$

8. Calculate your measured velocity, V_m .

 V_m = distance $\div t_{ave}$

 $V_m = \underline{\qquad} m/s$

9. How close are the theoretical and measured velocities?

Energy of Motion: Lesson 1, Swinging Pendulum Activity – Worksheet B