It's All in the Packaging Activity It Doesn't Add Up Worksheet Answers

Section I

One of many things to consider when buying environmentally friendly products is how much material is devoted to packaging. The table below lists packaging materials for drinks and the percent of the total weight of the drink due to the can, bottle or box.

The second column of the table lists what kind of drink may go into each container.
Assume that the school needs to buy a 100-pound container of juice for the cafeteria. In the fourth column of the table below, determine how much of the total weight is due to packaging. For example, an aseptic package is 4% of the total weight. Remember that "percent" means "per one hundred," so 4% of 100 pounds would be 4 pounds.

Container	Common Use	Percent of Total Weight	Packaging Weight out of 100 pounds	Total Pounds of Juice
Aseptic Package	Juice, etc	4%	4	96
Aluminum Can	Soda, etc	5%	5	95
Paperboard Cans	Milk, etc	6%	6	94
Plastic Bottle	Water, etc	7%	7	93
Steel Can	Soup, etc	16%	37	84
Glass Bottle	Wine, etc	37%		63

Questions

a) How much juice would you actually have in the 100-pound container? Put answers in the fifth column of the table above. (Remember, it is a 100-pound container of juice, minus the amount of the packaging.)
b) A Glass bottle takes up 37% of the total weight of a product. That's over nine times more than what an aseptic package weights, and more than seven times the weight of an aluminum can. Why do you think manufacturers package anything in glass? Answers will vary, possible thoughts include: Marketability, tradition, flavor, reactions (i.e. acid in a glass container)

More Than Juice

Section II

Packaging a new pair of sneakers in an aluminum can may not be such a good idea. Items besides juice and soda, such as CDs, clothes, food, etc., often come in different types of packaging. The table below lists some of the more common materials and the percent that they are used.

Material	Percent	Student Ranking (1-6)
Aluminum	3%	6
Glass	17%	2
Paper \& Paperboard	50%	1
Plastics	12%	4
Steel	4%	5
Wood	13%	3

Questions

a) Rank the materials from most common to least common in the column labeled Student Ranking. Rank the materials from 1-6. Each number can appear only once.
b) Using graph paper, make a bar graph listing the materials and their percents.
c) Add up the percents for each material. Total: 99\%
d) Does it add up to 100\%? Yes or No (circle correct answer)
e) Why or why not?

There are other materials used for packaging such as synthetics, wool, etc.

What a Waste!

Section III

On average, different countries produce different amounts of waste. The table below lists seven countries and the amount of waste (in pounds) that one person generates in one day.

Country	Pounds of Waste Per Person Per Day
Canada	3.7
France	2.1
Germany	2.0
Japan	2.8
Netherlands	3.0
United Kingdom	2.8
United States	4.4

a) Which country produces the most waste per person? United States
b) Which country produces the least waste per person? Germany
c) Which amount of waste is produced the most often? 2.8
(The value that occurs the most often is called the mode)
Which country(ies) produce it? Japan \& United Kingdom
d) Which amount of waste occurs in the middle? 2.8
(This is called the median) HINT: To find the middle value, rewrite the numbers from greatest to smallest. Now pick the one in the middle.

And which coutnry(ies) produce it? Japan and/or United Kingdom
e) What is the average amount of waste produced per person in the table? Approx. 2.97 pounds per person per day
(This is called the mean) HINT: To find the average, add up the total amount and divide by the number of countries.
The Energy Information Administration does a lot of research on recycling and waste (see https://www.eia.gov/kids/using-and-saving-energy/recycling.php for more information).

