Sum of Angles in Polygons Worksheet Answer Key

Part 1: Drawing Polygon Shapes

- 1. Each group selects 6-8 different regular polygons (two per person). Each group member is responsible for accurately drawing two polygons on separate sheets of paper. Use a ruler or straightedge to draw the shapes. Choose from the following regular polygons: Triangle, quadrilateral, pentagon, hexagon, heptagon, octagon, nonagon and decagon.
- 2. In each polygon, draw all the diagonals from a single vertex. (Pick one vertex and connect that vertex by lines to every other vertex in the shape.) See examples at the end of the next page.

1	2	3	4	5
Polygon name	# of sides	# of triangles formed	Sum of all angles in the polygon (in degrees)	How many degrees is each angle in the polygon?
Example: Triangle	3	1	180°	60°
Square	4	2	360°	90°
Pentagon	5	3	540°	108°
Hexagon	6	4	720°	120°
Heptagon	7	5	900°	128.8°
Octagon	8	6	1080°	135°
Nonagon	9	7	1260°	140°
Decagon	10	8	1440°	144°
n-gon	n	n-2	(n-2) * 180°	[(n-2) * 180°] / n

Part 2: Polygon Data Table—Sides, Triangles and Angles

3. Working as a group, fill in the first three columns of the table.

4. How many degrees do the angles of each triangle add to? **180°**

- 5. Fill in the fourth column of the table.
- 6. Look at the data for patterns that apply to all the polygons. Write an equation to find the sum of interior angles for a polygon with n sides.

sum of interior angles = (n-2) *180

Part 3: Test and Apply Your Equation

- 7. How many degrees in the angles of a 13-gon? n=13 (n-2)*180=11 * 180 =1980
- 8. Fill in the fifth column of the table and answer the following questions applying the equation that you derived above.
 - A. How many degrees are in each angle of a regular 13-gon? [(n-2)*180]/n = 1980/13 = 152.3
 - B. How many degrees in the angles of a 23-gon? n=23 (n-2) * 180 = 21 * 180 = 3780
 - C. How many degrees in each angle of a regular 23-gon? 3780/23 = 164.3
- 9. Look at the data for patterns that apply to all the polygons. Write an equation to find the measure of each angle in a regular n-gon?

[(n-2) * 180] / n

- A. How many degrees are in each angle of a regular quadrilateral (square)? n=4 [(n-2)*180]/n = (2 * 180)/4 = 90
- B. A regular pentagon? n=5 108 degrees
- C. A regular hexagon? n=6 120 degrees

Example vertex drawings for Parts 1 and 2. A red dot indicates a chosen vertex.

