Designing for a Sustainable W@RLD

Cost and Efficiency Trade-offs in Solar Water Heater Design

Appropriate technologies can improve the quality of life for developing communities

* A developing community does not have access to clean water, electricity and/or a waste disposal system

* Appropriate technologies can improve the quality of life for developing communities

Peruvian home

Appropriate technologies can improve the quality of life for developing communities

* What is an "appropriate technology"?

Solar Dish Kitchen – concentrates solar energy to cook food

Q Drum – a water container designed to roll easily

Big Boda Load-Carrying Bicycle – can carry hundreds of pounds of cargo

Alternative energy can also help developing communities

* What are some examples of alternative energies?

Alternative energy can also help developing communities

* What are some examples of alternative energies?

14 year old William designed a built a windmill make electricity

Peruvian home with passive solar heating to heat the home and water , using a Trombe wall and solar water heater

Solar water heaters are sold on commercial markets around the world

* Here are a few examples of the types of solar water heaters available

Energy Efficiency

 Efficiency is a measure of work done or energy produced divided by energy or resources needed

* For solar water heaters we measure efficiency as

$$Efficiency = \eta = \frac{Heat \ Energy \ Out}{Heat \ Energy \ In} = \frac{Q_{out}}{Q_{in}}$$

Engineers work hard to improve efficiency in all of their designs

Heat Transfer Basics

- * Conduction
- * Convection
- * Radiation

- * Properties of different materials
 - * Do certain colors absorb thermal energy better than others?
 - * Do certain materials heat up faster than others?
 - * Do some materials reflect energy better than others?

Solar Water Heaters!

* Flat plate solar water heaters designed by college freshmen helped a school in Peru!

 We will be breaking up into groups and building flat plate solar water heaters

Constraints for the design and testing of your solar water heaters

 The overall volume of the solar water heater must be between 4-6 ft³

* One gallon of water must cycle through the device a minimum of two times in 45 minutes

* Two, 250 Watt heat lamps can be placed however your team chooses, but the lamps cannot be closer than 12" to any point on the solar water heater

* Must be waterproof!

Testing Setup

Project Timeline

* Day 1 – Introduction and brainstorm ideas

* Day 2 – Create scaled drawings and budget for building

- For drawing, include material labels and dimensions for at least two views (i.e. top and side)
- For the budget, list exactly how much of what material you will need and the total cost. Use the <u>Materials Budget</u> <u>Worksheet</u>
- * Days 3 5 Build days
- * Day 6 Leak test
 - Make sure there are no leaks in you water heater before you seal it up
- * Day 7 Build Day

* Fix leaks found or make other alterations before initial testing

Project Timeline Continued

* Day 8 – Initial test

- * Record the temperature change of the water
- * Make a water temperature vs. time graph
- * Day 9 10 Modifications & efficiency calculations
 - * Time for improvement! Think about how you can increase your efficiency or fix any problems
 - * Calculate the final efficiency using the <u>Solar Water Heater</u> <u>Efficiency Analysis Worksheet</u>

* Day 11 – Final testing!

- * Record the temperature change of the water
- * Make a water temperature vs. time graph

Project Timeline Continued

* Day 12-13 – Compile results & make presentations

- * Calculate the overall efficiency from the final test
- * Complete the <u>Final Budget and Efficiency Worksheet</u>
- Create a 6 minute PowerPoint presentation. Be sure to include temperature graphs, efficiencies, and budgets from the initial and final tests
- * Day 14 Final Presentations

Materials List

Newspaper	• Zip ties
Tar paper	Clear tubing
 Plexiglas 	 Hot glue sticks
• 2"x4" wood	Duct Tape
Plywood	Nails
• 1" ID PVC	• Screws
• 5/8" ID PVC	Aluminum foil
• 5/8" PVC elbow/T connector	Bubble wrap
Rigid insulation	 14 gauge wire
Black spray paint	• 4 mm clear plastic sheeting
Cardboard	Plastic wrap

Brainstorm Pointers

- * Strive for quantity, not quality
- * Encourage wild ideas!!!
- * Withhold criticism
- Combine and/or piggyback on ideas (this is not and individual activity – work together!)
- * Record all ideas

Brainstorm Pointers

You have 15 minutes to come up with at least 10 ideas
 – it does not matter how crazy they are!!!

 As a group, select the most promising design and create a detailed drawing that includes labels of materials and dimensions required

 Complete an initial budget sheet and include a total estimated cost for your device