Viscosity Activity Worksheet

1. Describe the fluid you are working with using every day descriptive vocabulary. (For example: “I am looking at honey. It is yellow(ish) and clear(ish). It is pretty thick and moves slowly. It feels sticky.”)

2. Calculate the density of the fluid using these steps:
 - Weigh the empty graduated cylinder. Record its mass in grams.
 \[M_{\text{cylinder}} = \boxed{\text{[g]}} \]
 - Fill the cylinder with fluid, and record the volume in cm\(^3\). Note: 1 cm\(^3\)=1 ml.
 \[V_{\text{fluid}} = \boxed{\text{[cm}^3]\text{]} \]
 - Weigh the full graduated cylinder. Subtract the mass of the empty graduated cylinder and record the mass of the fluid.
 \[M_{\text{fluid}} = \boxed{\text{[g]}} \]
 - The density of the fluid is the mass over the volume. Calculate the density of the fluid.
 \[\rho_f = \frac{\text{Mass of Fluid [g]}}{\text{Volume of Fluid [cm}^3]\text{]} \]
 \[\rho_f = \boxed{\text{[g/cm}^3]\text{]} \]
3. **Measure the density of the sphere using these steps:**
 - Measure the radius of the sphere. Record as r [cm].
 \[r_s = \text{__________ [cm]} \]
 - Calculate the volume of the sphere. Either use the equation:
 \[V_{ol_s} = \frac{4}{3} \pi r^3 \]
 or place the sphere in a graduated cylinder filled with water and record its displacement.
 \[V_{ol_s} = \text{__________ [cm}^3\text{]} \]
 - Weigh the sphere. Record its mass.
 \[M_s = \text{__________ [g]} \]
 - Calculate the density of the sphere by dividing its mass by its volume.
 \[\rho_s = \frac{\text{Mass of Sphere [g]}}{\text{Volume of Sphere [cm}^3\text{]}} \]
 \[\rho_s = \text{__________ [g/cm}^3\text{]} \]

4. **Measure the terminal velocity of the sphere falling through the fluid using these steps:**
 - With your stopwatch ready, drop the ball into the fluid.
 If the fluid is not very viscous, the ball will fall through it very fast, *so be ready!*
 If the fluid is thick enough, then the ball will reach a constant speed.
 This is the *terminal velocity*, the point at which the drag on the sphere by the fluid is
 equal to the force of gravity.
 - Measure how fast the ball falls a distance. Record the distance, and the time.
 distance = _________ [cm]
 time = _________ [s]
 - Calculate the velocity, which is the distance divided by the time.
 \[V_s = \text{__________ [cm/s]} \]
5.

6. **Using this equation, derived from Stokes’ law, calculate the viscosity of your fluid.**
 Gravity is 981 cm/s². *Be very careful* to show your units and how they cancel out.
 Your final answer should be in units of \([g/(cm\ s)]\).

 \[
 \mu = \frac{4r^2g_0(p_s - p_f)}{9\nu}
 \]

 \[\mu = \text{________} \text{[g/(cm s)]}\]

7. **Viscosities are usually recorded in [Pa s]. To convert from \([g/(cm\ s)]\) to \([Pa\ s]\), simply divide by 10:**

 \[
 1 \text{[Pa s]} = 1 \left[\frac{kg}{m\ s}\right] = 1 \left[\frac{1000 g}{100 cm\ s}\right] = 10 \left[\frac{g}{cm\ s}\right]
 \]

 \[\mu = \text{________} \text{[Pa s]}\]

8. **Using the internet, look up the viscosities of some common household fluids.**
 Be sure to include units. Do any of the answers surprise you?

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: blood</td>
<td>3 x 10⁻³ to 4 x 10⁻³ [Pa s]</td>
</tr>
</tbody>
</table>

 Note: In searching the internet, you may find viscosities in a variety of units. Some may be in Poise [P] or Centipoise [cP]. 1 [cP]=.001 [Pa s]. The viscosity of water is 1 [cP]. Other fluids may have viscosity in Stokes [St], which is the ratio of the viscosity to the density of the fluid. To convert from Stokes, multiply it by the fluid’s density, or find another source! *Hint: Search for “dynamic viscosity.”*