An Introduction to Air Quality
Learning Goals

After this lesson, you will be able to...

• List and describe the three primary reasons to study air quality: health effects, climate change and aesthetics

• Explain the differences between primary and secondary pollutants, and gas-phase and particulate pollutants

• Explain the different sources of \(\text{CO}_2 \) (biological and combustion), \(\text{VOCs} \) (combustion and volatilization), and \(\text{NO}_2 \) (combustion).
What sets the Earth apart from other planets and makes it possible for us to live here? **the atmosphere**
Radius=6000 km
Atm=12 km
Radius/atm=500

Radius=75 mm
Skin=0.5 mm
Radius/skin=150
What gases make up our atmosphere?

- Oxygen: 21%
- Nitrogen: 78%
- Other Gases: 1%

Including but not limited to:
- argon (0.93%)
- carbon dioxide (0.043%)
- water vapor
- hydrogen
- neon
- helium
- methane
The Earth’s atmospheric conditions vary from the surface to space—it’s a complex system.
What do you think of when you hear “air quality”?

Is air quality the same all over the planet?
Why or why not?
Types of Air Pollution

Particulate Matter (PM)

Gas Phase

carbon dioxide (CO₂)

Note: Particulates may also be liquid, or a mixture of solid and liquid.
Pollutant Size and Classification

- PM$_{10}$ (< 10 µm)
- PM$_{2.5}$ (< 2.5 µm)
- Gaseous contaminants

units = microns (1,000,000 microns = 1 meter)
Primary vs. Secondary Emissions

$\text{NO}_x + \text{VOCs} + \text{Sunlight} = \text{ozone (O}_3\text{)}$
Our Focus

- **Carbon dioxide (CO\(_2\))**
 - Sources: biological respiration, combustion (complete)

- **Nitrogen dioxide (NO\(_2\))**
 - Sources: combustion (high temperature)

- **Volatile organic compounds (VOCs)**
 - Sources: combustion (incomplete), any organic compound capable of volatizing at room temperature and pressures (such as cleaning products, paint, etc.)

- **Ozone (O\(_3\))**
 - Sources: atmospheric chemistry requiring sunlight

\[
\text{Carbon Fuel} + \text{O}_2 \rightarrow \text{H}_2\text{O} + \text{CO}_2
\]
(complete combustion)

\[
\text{N}_2 + \text{O}_2 \rightarrow \text{NO} \& \text{NO}_2
\]
(high temperatures can break up N2 in the air)

Incomplete or inefficient combustion → **uncombusted VOCs**

\[
\text{NO}_x + \text{VOCs} + \text{sunlight} \rightarrow \text{ground-level ozone}
\]

ozone damage to plant:

other VOCs
What are the main causes of air pollution?

Pollutants come from:

- Combustion
- Compound volatilization
 - Anthropogenic sources: industrial activity or manufacturing
 - Natural sources: trees (VOCs)
- Mechanical generation
 - Such as dust

Then, meteorological conditions and atmospheric dynamics impact whether or not the emissions disperse. "the solution to pollution is dilution"
Temperature inversions affect dilution and how pollutants disperse

Why “inversion”?
• Normally, warm air at the Earth’s surface rises up, causing mixing throughout the atmosphere
• Instead, we have warm air on top, which traps the old air and pollutants, causing an inversion

1. Low winter sun provides less warmth to the surface
2. Warmer air acts like a “lid”
3. Pollution is trapped by this “lid”
• Inversions are usually worst in the early morning hours
The Bigger Picture
Why does air quality matter?

- Health impacts (breathing)
- Climate change
- Aesthetics (visibility and odor)
Outdoor Air Pollution > Health Impacts

• Air pollution can be **harmful to** human health

• A 1952 London smog event killed **4,000+ people**

The relationship between smoke, sulphur dioxide (in parts per billion – ppb) and number of deaths during the Great London Smog, December 1952.
(After Wilkins, 1954, p. 170)
How do we protect U.S. citizens’ health?

“The mission of EPA is to protect human health and the environment.”

- Human health is the primary focus, and regulations are based on scientific literature and studies on health and safety, which are continuously reevaluated.

 For example...
 - 1963 Clean Air Act
 - National Ambient Air Quality Standards (NAASQs)
 - Primary standards (CO, O₃, NOₓ, SO₂, Pb, and PM$_{2.5}$ & PM$_{10}$)
 - Secondary standards for ecological health
 (Note: These are different from primary and secondary pollutants)
 - Hazardous air pollutants (HAPs)

- LIMITATIONS: For outdoor air quality only; OSHA oversees indoor *workplace* air quality.
• ~3 billion people cook and heat their homes using *solid fuels*
 • *Solid fuels* include wood, crop wastes, charcoal, coal and dung
 • Inefficient cooking technologies (open fires and leaky stoves) and solid fuels produce small soot particles that penetrate deep into the lungs, leading to pneumonia, stroke, heart and lung disease and lung cancer

• More than 4 million people die prematurely every year from illnesses that are caused by indoor air pollution created by cooking with solid fuels

Source: World Health Organization
Climate Change and Air Pollution

The Earth’s surface radiates heat into the atmosphere. Then that heat is either...

- More greenhouse gases (GHG) = less heat escaping & more radiated back to the Earth
- Due to air pollution generated by humans, GHG concentrations are increasing
- Examples of greenhouse gases...
 - Water vapor, CFCs, nitrous oxide (N_2O)
 - *Carbon dioxide (CO_2), methane (CH_4), ozone (O_3)

*We are able to measure these with the Pod

Figure courtesy of Lisa Gardiner/Windows to the Universe
Air Pollution > Aesthetic Impacts

- Poor air quality results in *decreased visibility*, which is especially an issue for tourism in national parks or other pristine areas.
- Imagine if the haze below were present in Rocky Mountain National Park.

The difference between a clear day and an extremely smoggy day in Beijing.

- Poor air quality can also cause *unpleasant odors*, especially in areas of high industrial activity.
Air Quality Monitoring Technologies
A Quick Note about Common Units...

For AQ studies, we need to know concentration:

- **ppm or ppb**
 - = parts per million or parts per billion
 - EXAMPLE: Imagine you have 1 million water bottles and 400 are filled with CO₂ while the rest are filled with air—by volume you have 400 ppm of CO₂

- **µg/m³**
 - = micrograms of pollutant per meter cubed of air
 - This is the total weight of particulates (for example) that you have, per meter cubed of air
What are we measuring?

- **Optical properties**: such as absorbance
 - Some gases absorb light, so less light makes it to the detector, which we can measure in order to figure out how much of the gas we have.
 ![Infrared Light Emitter and Gaseous Compound Diagram]

- **Physical properties**: such as weight or size
 ![Physical Properties Diagram]

- **A change**: Burn it and measure the resulting energy, or gases react with the surface of a sensor and we measure the reaction
 ![A Change Diagram]
Conventional Monitoring Equipment

- Conventional monitoring equipment
 - High cost ($5,000 - $100,000)
 - High accuracy, high precision
 - Necessary for scientific research and regulatory purposes (states must prove they are meeting EPA regulations)

Picarro Cavity Ring-Down Spectroscopy (CRDS) instrument, as used in greenhouse gas measurement stations worldwide

Measures: CO, CO₂, CH₄, H₂O and other species

Continuous Air Monitoring Project
Colorado Department of Public Health and the Environment, Denver CO

Measures: CO, PM₁₀, PM₂.₅, NO₂, O₃, SO₂, NO, TEMP, WD, WS
Next-Generation Monitoring Equipment

The “next-generation movement” — the future of air quality monitoring!

- Low-cost monitors enable researchers to gather more data by using multiple monitors at once (this provides better data on the spatial variability of pollutants)
- Low-cost monitors also make monitoring accessible to more people: “citizen science”
- They are still under development, require further validation, can be fairly accurate (time-intensive), and are useful for focused projects and hands-on teaching and learning
Pods

- **Continuous monitoring:**
 - Indoor or outdoor
 - Mobile or stationary

- **Total cost** < $1000 per device, open-source design

- **Measures:**
 - CO₂, NO₂, total VOCs, O₃, and CO
 - Temperature, humidity, wind speed, wind direction and GPS locations

- **Sensors used:**
 - Metal oxide semi-conductor
 - Electrochemical
 - Non-dispersive infrared
Control Technologies
Control Technologies Overview

How do we remove particles?

- Essentially, we need to somehow trap or filter them
- Effectiveness depends on particle size and composition
Control Technologies Overview

How do we remove gases?

- Essentially, we need to capture them or change their composition
- Effectiveness depends on target compound
Control Technologies in Daily Life

Stove Hoods

HVAC Filters

Catalytic Converters
Control Technologies Overview

What else can we do?

Mitigation: Changing behavior or practices to minimize what is emitted in the first place.

Example: OzoneAware campaign ⇒

- Example recommendations:
 - No idling
 - Take public transit
 - Mow after dark

What are they trying to mitigate?
Conclusions

We care about air quality because of...
• Health, climate change and aesthetics

Air pollution comes from...
• Combustion, mechanical production, and volatilization

Engineers use a wide variety of monitoring technologies to understand what is in our air

Engineers develop and implement control technologies and mitigation strategies to improve air quality

Any question?
What could you investigate with this tool?
What are you curious about?