Load Combinations Worksheet

Show your work as you use the following load combinations to solve the problem:

Load Combinations
1. Ultimate load = dead load + live load + snow load
2. Ultimate load = dead load + live load + wind load (or earthquake load)
3. Ultimate load = dead load + live load + wind load + (snow load ÷ 2)
4. Ultimate load = dead load + live load + snow load + (wind load ÷ 2)
5. Ultimate load = dead load + live load + snow load + earthquake load

Calculate the five ultimate loads resulting from each combination for the following loads:

Dead load = 100,000 lbs
Live load = 30,500 lbs
Wind load = 5,020 lbs
Snow load = 400 lbs
Earthquake load = 5,000 lbs

From the five ultimate loads calculated above, for which ultimate load amount must the structure be designed?
Problem 1: Using the highest load calculated from the first page, calculate the required area of a rectangular shape made of concrete if it is a pier or a column with a compression force acting on it. If \(L = 10 \) inches, what must \(B \) be equal to?

The maximum compressive strength of this concrete is 4,000 lbs/in\(^2\). Use the following equations to complete the problem. Show all work and calculations.

Highest ultimate load = (max. compressive strength) x (cross-sectional area)
Cross-sectional area = (B) x (L)

Problem 1 cross-sectional area.
Problem 2A: Using the highest load calculated from the first page, calculate the required area of the circular shape made of concrete if it is a pier or a column with a compression force acting on it. What is the radius of this circle? The maximum compressive strength of this concrete is 5,000 lbs/in².

Problem 2B: Using the highest load calculated from the first page, calculate the required cross sectional area of the I-shape made of steel if it is a pier or a column with a tension force acting on it. The maximum tensile strength of this steel is 50,000 lbs/in².

Use the following equations to complete the problem. Show all work and calculations.

Highest ultimate load = (max. compressive strength) x (cross-sectional area)

Cross-sectional area of circle = \(\pi \times (\text{radius})^2 \) \[\pi = 3.14 \]

Highest ultimate load = (max. compressive strength) x (cross-sectional area)
Problem 3A: Using the highest load calculated from the first page, calculate the required Z_x of the rectangular shape made of steel if it is a beam or a girder with a length equal to 20 feet (or 240 inches). F_y of steel is equal to 50,000 lbs/in2.

Problem 3B: What if the same beam was made of concrete with F_y equal to 4,000 lbs/in2.

Use the following equations to complete the problem. Show all work and calculations.

$$Z_x = \frac{\text{force} \times \text{length}}{(F_y \times 4)}$$

![Cross-sectional area diagram] Problem 3 cross-sectional area.