Load Combinations Worksheet Answers

Show your work as you use the following load combinations to solve the problem:

Load Combinations
1. Ultimate load = dead load + live load + snow load
2. Ultimate load = dead load + live load + wind load (or earthquake load)
3. Ultimate load = dead load + live load + wind load + (snow load ÷ 2)
4. Ultimate load = dead load + live load + snow load + (wind load ÷ 2)
5. Ultimate load = dead load + live load + snow load + earthquake load

Calculate the five ultimate loads resulting from each combination for the following loads:

- Dead load = 100,000 lbs
- Live load = 30,500 lbs
- Wind load = 5,020 lbs
- Snow load = 400 lbs
- Earthquake load = 5,000 lbs

Answer
- Load combination 1: = 100,000 + 30,500 + 400 = 130,900 lbs
- Load combination 2: = 100,000 + 30,500 + 5020 (or 5000) = 135,520 lbs with wind load
 - OR = 135,500 lbs with earthquake load
- Load combination 3: = 100,000 + 30,500 + 5020 + (400 ÷ 2) = 135,720 lbs
- Load combination 4: = 100,000 + 30,500 + 400 + (5020 ÷ 2) = 133,410 lbs
- Load combination 5: = 100,000 + 30,500 + 400 + 5000 = 135,900 lbs

From the five ultimate loads calculated above, for which ultimate load amount must the structure be designed?

The structure must be designed for 135,900 lbs which is obtained with load combination 5.
Problem 1: Using the highest load calculated from the first page, calculate the required area of a rectangular shape made of concrete if it is a pier or a column with a compression force acting on it. If \(L = 10 \) inches, what must \(B \) be equal to?

The maximum compressive strength of this concrete is \(4,000 \) lbs/in\(^2\). Use the following equations to complete the problem. Show all work and calculations.

Highest ultimate load = (max. compressive strength) \(\times \) (cross-sectional area)

Cross-sectional area = \(B \times L \)

Problem 1 cross-sectional area.

Answer

Highest ultimate load = \(135,900 \) lbs

Cross-sectional area = highest ultimate load \(\div \) max. compressive strength
Cross-sectional area = \(135,900 \) lbs \(\div \) \(4,000 \) lbs/in\(^2\)
Cross-sectional area = \(33.975 \) in\(^2\)

If \(L = 10 \) inches,

\(B = \) cross-sectional area \(\div \) \(L \)

\(B = 33.975 \) in\(^2\) \(\div \) 10 inches

\(B = 3.3975 \) inches
Problem 2A: Using the highest load calculated from the first page, calculate the required area of the circular shape made of concrete if it is a pier or a column with a compression force acting on it. What is the radius of this circle? The maximum compressive strength of this concrete is 5,000 lbs/in².

Problem 2B: Using the highest load calculated from the first page, calculate the required cross sectional area of the I-shape made of steel if it is a pier or a column with a tension force acting on it. The maximum tensile strength of this steel is 50,000 lbs/in².

Use the following equations to complete the problem. Show all work and calculations.

Highest ultimate load = (max. compressive strength) x (cross-sectional area)
Cross-sectional area of circle = π x (radius)²

Highest ultimate load = (max. compressive strength) x (cross-sectional area)

Problem 2 cross-sectional areas.

Answer
Highest ultimate load = 135,900 lbs

For the circular shape:
Cross-sectional area = highest ultimate load ÷ max. compressive strength
Cross-sectional area = 135,900 lbs ÷ 5,000 lbs/in²
Cross-sectional area = 27.18 in²
Radius of circle = square root of (cross-sectional area of circle ÷ π)
Radius of circle = square root of (27.18 in² ÷ 3.14)
Radius of circle = 2.942 inches

For the I-shape:
Cross-sectional area = highest ultimate load ÷ max. tensile strength
Cross-sectional area = 135,900 lbs ÷ 50,000 lb/in²
Cross-sectional area = 2.718 in²
Problem 3A: Using the highest load calculated from the first page, calculate the required Z_x of the rectangular shape made of steel if it is a beam or a girder with a length equal to 20 feet (or 240 inches). F_y of steel is equal to 50,000 lbs/in2.

Problem 3B: What if the same beam was made of concrete with F_y equal to 4,000 lbs/in2.

Use the following equations to complete the problem. Show all work and calculations.

$$Z_x = \frac{\text{force} \times \text{length}}{(F_y \times 4)}$$

![Rectangular cross-sectional area]

Problem 3 cross-sectional area.

Answer

Highest Ultimate Load = 135,900 lbs

If made of steel:

$$Z_x = \frac{\text{force} \times \text{length}}{(F_y \times 4)}$$

$$Z_x = \frac{135,900 \text{ lbs} \times 240 \text{ inches}}{4 \times 50,000 \text{ lbs/in}^2}$$

$$Z_x = 163.08 \text{ in}^3$$

If made of concrete:

$$Z_x = \frac{\text{force} \times \text{length}}{(F_y \times 4)}$$

$$Z_x = \frac{135,900 \text{ lbs} \times 240 \text{ inches}}{4 \times 4,000 \text{ lbs/in}^2}$$

$$Z_x = 2038.5 \text{ in}^3$$