Hydropower – Energy from Moving Water

Of the renewable energy sources that generate electricity, hydropower is the most often used. It accounted for nearly 7% of U.S. generation and 38% of renewable generation in 2019. It is one of the oldest sources of energy and was used thousands of years ago to turn a paddle wheel for purposes such as grinding grain. Our nation's first industrial use of hydropower to generate electricity occurred in 1880, when 16 brush-arc lamps were powered using a water turbine at the Wolverine Chair Factory in Grand Rapids, Michigan. The first U.S. hydroelectric power plant opened on the Fox River near Appleton, Wisconsin, on September 30, 1882. Until that time, coal was the only fuel used to produce electricity. Because the source of

hydropower is water, hydroelectric power plants must be located on a water source. Therefore, it was not until the technology to transmit electricity over long distances was developed that hydropower became widely used.

Mechanical energy is derived by directing, harnessing or channeling moving water. The amount of available energy in moving water is determined by its flow or fall. Swiftly flowing water in a big river, like the Columbia River along the border between Oregon and Washington, carries a great deal of energy in its flow. So, too, with water descending rapidly from a very high point, like Niagara Falls in New York. In either instance, the water flows through a pipe, or penstock, then pushes against and turns blades in a

turbine to spin a generator to produce electricity. In a run-of-the-river system, the force of the current applies the needed pressure, while in a storage system, water is accumulated in reservoirs created by dams, then released when the demand for electricity is high.

TeachEngineering.org

Brought to you by

Meanwhile, the reservoirs or lakes are used for boating and fishing, and often the rivers beyond the dams provide opportunities for whitewater rafting and kayaking. Hoover Dam, a hydroelectric facility completed in 1936 on the Colorado River between Arizona and Nevada, created Lake Mead, a 110-mile-long national recreational area that offers water sports and fishing in a desert setting.

In 2019, about half (50%) of the total U.S. hydroelectric capacity for electricity generation is concentrated in three states (Washington, California and New York) with approximately 24% in Washington, the location of the nation's largest hydroelectric facility – the Grand Coulee Dam.

Top hydropower producing states, 2019

Source: U.S. Energy Information Administration, *Electric Power Monthly*, Table 1.10.B, February 2020, preliminary data

It is important to note that only a small percentage of all dams in the U.S. produce electricity. Most dams were constructed solely to provide irrigation and flood control.

Some people regard hydropower as the ideal fuel for electricity generation because, unlike the nonrenewable fuels used to generate electricity, it is almost free, there are no waste products, and hydropower does not pollute the water or the air. However, it is criticized because it does change the environment by affecting natural habitats. For instance, in the Columbia River, salmon must swim upstream to their spawning grounds to reproduce, but the series of dams gets in their way. Different approaches to fixing this problem have been used, including the construction of "fish ladders" that help the salmon "step up" the dam to the spawning grounds upstream.

> **Reading Source:** Hydropower — Energy from Moving Water, Kid's Page, Energy Information Administration, U.S. Department of Energy, Accessed January 18, 2021, https://www.eia.gov/kids/energy-sources/hydropower/

