Lesson 4, Engineering Sport – Energy Work sheet – Answers — Kinetic OR Potential Energy ? Remember: Kenetic Energy: $KE = \frac{1}{2} m * v^2 = \frac{1}{2} * m * v * v (units are kg-m^2/s^2)$ Potential Engergy: $PE = m * g * h (units are kg-m^2/s^2)$

and g = 9.81 (or ~10) m/s²

- 1. An Olympic skier is in the racing stalls waiting for the beginning of the downhill slalom race. He weighs 75kg, and the ski slope is 1,000 m high.
 - a. Does he have potential or kinetic energy before the race?

Potential

b. What is his potential energy?

 $\underline{PE = m^*g^*h = 75kg^*10 \ m/s^2 \ *1000m = 750,000kg - m^2/s^2}$

c. When he skis down the hill, he reaches a speed of 20 m/s. What is his kinetic energy?

<u>KE = $\frac{1}{2}$ m*v² = $\frac{1}{2}$ * 75kg *(20m/s)² = 15,000kg-m²/s²</u>

- 2. An Olympic sprinter is going for gold in the 100m dash. She weighs 64kg and runs at 10 m/s.
 - a. What type of energy does she have?

Kinetic

b. What is her kinetic energy?

 $KE = \frac{1}{2} m^* v^2 = \frac{1}{2} * 64 kg * (10m/s)^2 = 3,200 kg - m^2/s^2$

1