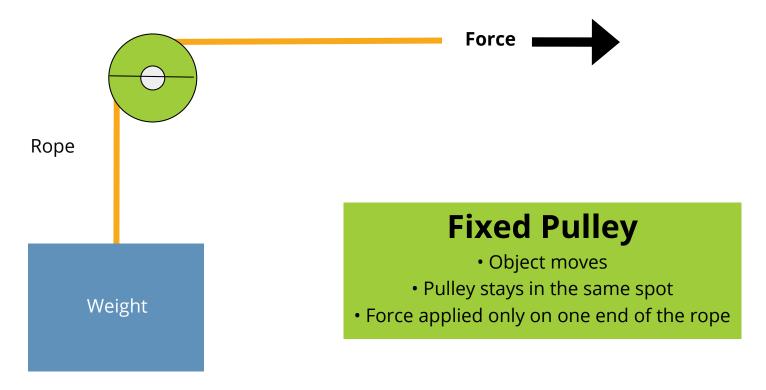
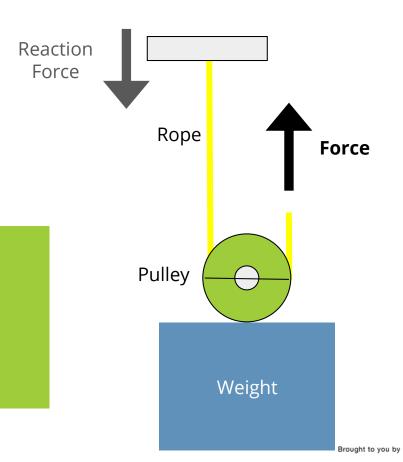
TEM Curriculum for K-12

Powerful Pulleys


What is a pulley?

- ☐ A pulley is a wheel
- ☐ A pulley uses rope that goes around the wheel (often in a groove)
- ☐ The rope attaches to objects
- ☐ The other end of the rope has a **force** applied
 - Applied force is a push or pull

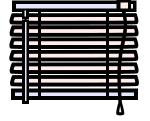

Fixed Pulley

Moveable Pulley

Movable Pulley

- Pulley is attached to object
- Pulley and object move together
- Rope is attached to something that does not move
- Force applied to other end of rope

Who has seen pulleys?


...Pulleys are all around us...

Flagpole →

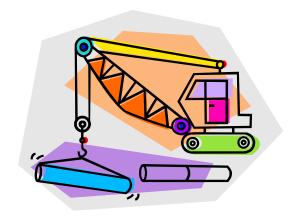
← Window shades and blinds

More examples

← Sails and fishing nets

+ clothes lines

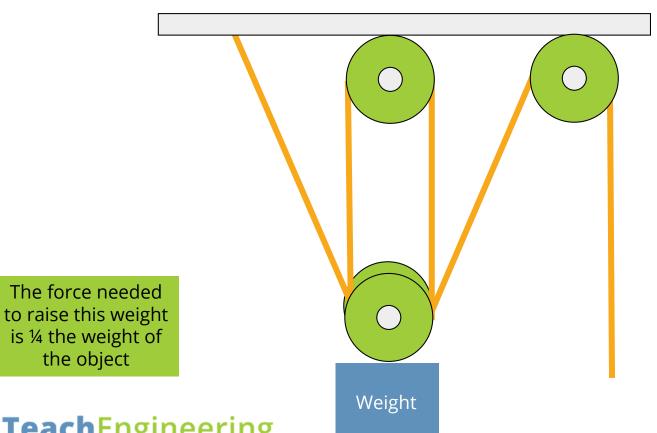
+ gym training equipment


+ rock climbing gear

Why use pulleys?

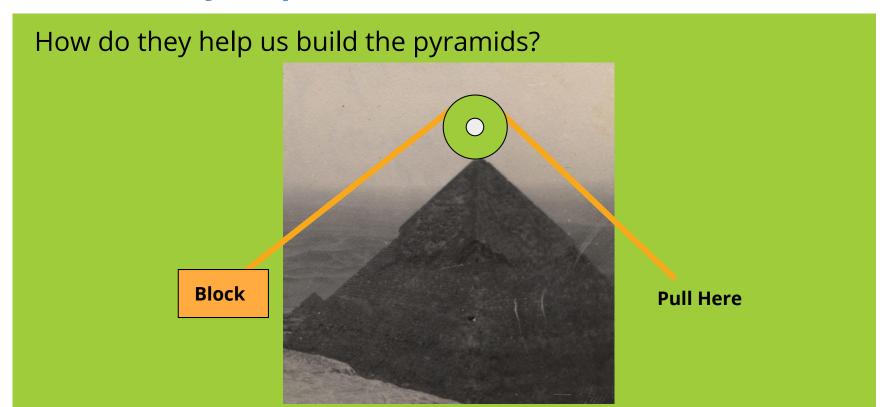
- Makes lifting things easier
- □ Pulleys redirect force
 - Enables us to use gravity to help us (it is usually easier to full down than to lift something up)
- ☐ Using several pulleys reduces the force required to lift an object
 - We have to use more rope and make the rope go further
 - Mechanical Advantage: More distance traveled, but less force required



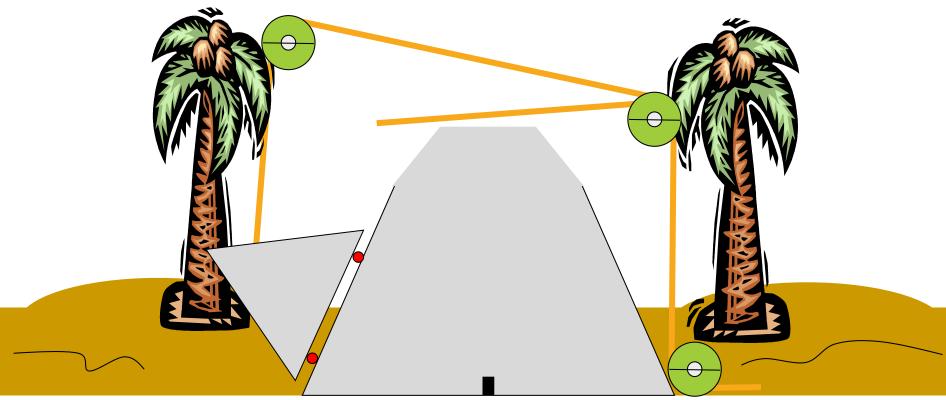

Using Gravity

- ☐ Easier to pull down than up
- ☐ Elevators use gravity
 - Counterweight on the other side of the cable
 - Gravity already applying force on counterweight
 - Less powerful motor required

System of Pulleys



the object


How do they help us?

Building the Pyramids

Vocabulary & Definitions

Force: A push or pull on an object.

Fixed pulley: A pulley attached to a fixed point with the rope attached to the object.

Movable pulley: A pullet attached to the object itself, with one end of the rope attached to a fixed point.

Redirect force: To change the direction of a push or pull to gain advantage over a task.

Mechanical advantage: The advantage gained my using simple machines; trading distance for force.

References

Drawing of block and tackle (right) is Copyright © U.S. Department of Transportation, Federal Highway Administration, Handtools for Trailwork,

http://www.fhwa.dot.gov/environment/fspubs/05232810/page16.htm

Photo of Giza pyramid (right) is Copyright © National Library of Medicine, Profiles in Science, The Wilbur A. Sawyer Papers, http://profiles.nlm.nih.gov/LW/B/B/D/Y/

Photo of crane (right) is Copyright © NASA, Nightglow, Interesting Vehicles, http://nightglow.gsfc.nasa.gov/vehicles.html

Drawing of mine elevator (right) is Copyright © U.S. Department of Labor, Mine Safety and Health Administration, http://www.msha.gov/S&HINFO/TECHRPT/HOIST/PAPER4.HTM

The photo of an unguarded belt and pulley (right) is Copyright © U.S. Department of Labor, OSHA, http://www.osha.gov/SLTC/woodproducts/pulley.html.

The hand and pulley photograph (right) is Copyright © Denise Carlson, ITL Program, College of Engineering and Applied Science, University of Colorado at Boulder. Used with permission.

Pulley concept drawings are Copyright © ITL Program, College of Engineering and Applied Science, University of Colorado at Boulder.

The rest of the images are Copyright © 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. All rights reserved.

TeachEngineering

