Tissue Mechanics
Silly Putty: How does it work?

- Glue is a polymer, which means it is made of long chains of molecules.
- When borax is added, it cross-links these molecules.
- The amount of cross-linking determines the material properties of the silly putty.
- Does more borax increase or decrease the stiffness of the silly putty?
 - It increases the stiffness!
What does this have to do with tissue mechanics?

- Human tissues contain varying degrees of collagen. Collagen is similar to the strands of molecules in glue. It is a long protein strand.

- Collagen can also cross-link in our bodies similar to how the borax cross-links the glue.

- The amount of collagen cross-linking in our tissues is directly related to the material properties of that tissue.
Why study tissue mechanics?

- For the engineering design of devices that will be implanted or used inside of the body
 - Examples: artificial heart valves, arterial stents, surgical devices
 - Must be “biocompatible”

- To understand pathologies and their effect on tissues
 - Examples: valve stenosis, osteoporosis

- For the design of prosthetics (artificial body parts)
 - Examples: artificial arms, legs, hands, feet
Tissue Mechanics

Proteins that can determine the *mechanical properties* of tissues:

- **Collagen**: tissue strength
 - Example: *tendons*

- **Elastin**: elastic properties
 - Example: *arteries*

- **Proteoglycan**: allows tissues to retain water that can be used for lubrication
 - Example: *cartilage*