Heterogeneous vs.

Homogeneous

Mixtures

How are they different?

Homogeneous mixtures have uniform composition

Heterogeneous mixtures have non-uniform composition

What type of mixtures are these?

Cheerios

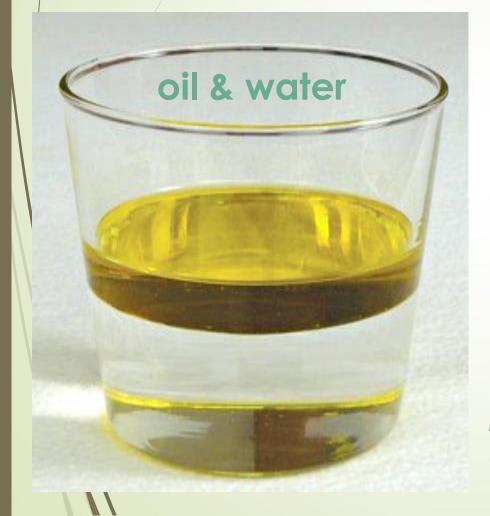
■ Trail mix

Cheerios is homogeneous

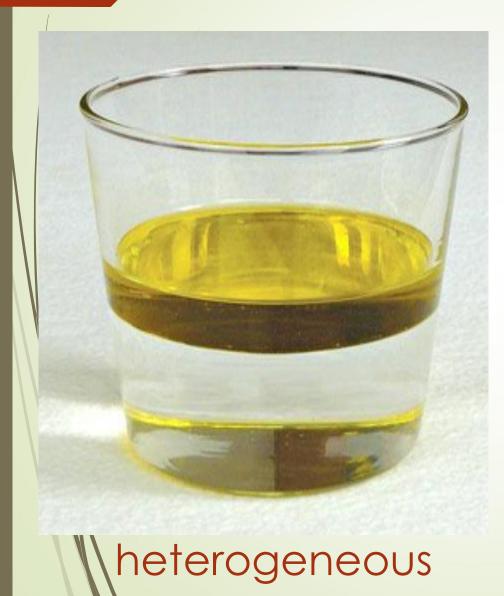
Trail mix is HETEROGENEOUS

What type of mixtures are these?

- Apple juice
- Orange juice with pulp
- Chocolate dough
- Italian salad dressing



- Apple juice is homogeneous
- Orange juice with pulp is heterogeneous
- Chocolate dough is homogeneous
- Italian salad dressing is heterogeneous



What type of mixtures are these?

Mayonnaise, which is mainly made of oil and water

homogeneous

How many components? How many phases?

mayonnaise, (made of oil & water)

How many components? How many phases?

water phase

water phase and oil phase

Water phase, oil phase, and many other phases

How would you separate mixtures?

It depends on the type of mixture, whether they are homogeneous or heterogeneous

Mixture Separation Techniques

Homogeneous Mixtures

centrifugation
coagulation
distillation
evaporation

Heterogeneous Mixtures

filtration
hand picking
magnetic separation
sieving
winnowing
sedimentation

Solution-Based Mixtures

- → True solution
- Colloidal solutions
- Suspensions

These solutions typically differ in the particle size of the solute.

Solution-Based Mixtures

- True solution: solute size: <1 nm</p>
- Colloidal solutions: solute size: 1 nm to 100 nm
- Suspensions: solute size: >100 nm

These solutions typically differ in the manner in which the solutes reside in the solvent.

Solution-Based Mixtures

- True solutions: The solute is dissolved and is invisible
- Colloidal solutions: The solute is dispersed uniformly throughout the solution; the presence of the solute is visible, but you cannot lift it out
- Suspensions: The solute stays outside the solvent; that is, the solute is suspended

These solutions typically differ in the manner in which the solute can be separated from the solvent.

Separation Techniques for Solution-Based Mixtures

True solutions	Colloidal solutions	Suspensions
evaporation	coagulation	filtration
distillation	centrifugation	sedimentation

We will discuss coagulation, centrifugation and sedimentation