\qquad Date: \qquad Class: \qquad

A Frictional Roller Coaster Pre-Quiz Answer Key

An open-downward parabola with vertex $(9,3)$ will be set up so it is tangent to the open-upward parabola with vertex $(4,1)$ and passing through $(0,9)$. Find the equation of the open-downward parabola and the tangency point.

Hint: Use the parabola vertex form equation: $y-k=a(x-h)^{2}$, and the fact that at the tangency point the slopes of the tangent lines of both parabolas are equal.

Equation for open-upward parabola (parabola 1): $y-1=a(x-4)^{2}$
Determine the value of coefficient a using the fact that parabola 1 passes through point $(0,9)$:

$$
\begin{gathered}
9-1=a(0-4)^{2} \\
8=16 a \\
a=1 / 2
\end{gathered}
$$

Parabola 1: $\quad y-1=1 / 2(x-4)^{2}$
For open-downward parabola (parabola 2): $y-3=a(x-9)^{2}$
Because parabolas 1 and 2 intersects, then the y-coordinates have to be equal:

$$
\begin{align*}
& y=1+1 / 2(x-4)^{2} \tag{1}\\
& y=3+a(x-9)^{2}
\end{align*}
$$

Then:

$$
1+1 / 2(x-4)^{2}=3+a(x-9)^{2}
$$

(3)

$$
(x-4)^{2}=4+2 a(x-9)^{2}
$$

Because tangents have to be equals at the intersection point, the derivatives of equations (1) and (2):

$$
\begin{gathered}
y^{\prime}=x-4 \\
y^{\prime}=2 a(x-9)
\end{gathered}
$$

have to be equal:
(4)

$$
x-4=2 a(x-9)
$$

Equations (3) and (4) form a system of equations:

$$
\begin{align*}
(x-4)^{2} & =4+2 a(x-9)^{2} \tag{3}\\
x-4 & =2 a(x-9)
\end{align*}
$$

Substituting second equation in first equation:

$$
\begin{gathered}
(x-4)^{2}=4+2 a(x-9)(x-9) \\
(x-4)^{2}=4+(x-4)(x-9)
\end{gathered}
$$

Solving for x :

$$
\begin{gathered}
x^{2}-8 x+16=4+x^{2}-13 x+36 \\
-8 x=24-13 x \\
5 x=24 \\
x=24 / 5
\end{gathered}
$$

Substituting the x-value in equation (4), solve for a :

$$
\begin{gathered}
24 / 5-4=2 a(24 / 5-9) \\
4 / 5=2 a(-21 / 5) \\
a=-2 / 21
\end{gathered}
$$

Substituting x-value in equation (1), solve for y :

$$
\begin{gathered}
y=1+1 / 2(24 / 5-4)^{2} \\
y=1+1 / 2(4 / 5)^{2} \\
y=1+8 / 25 \\
y=33 / 25
\end{gathered}
$$

$$
\begin{array}{ll}
\text { open-upward parabola: } & y=1+1 / 2(x-4)^{2} \\
\text { open-downward parabola: } & y=3-2 / 21(x-9)^{2} \\
\text { tangency point: } & (24 / 5,33 / 25)
\end{array}
$$

