A Tale of Friction

Basic Rollercoaster Physics

Fahrenheit Rollercoaster, Hershey, PA | max height = $121 \mathrm{ft} \mid$ max speed = 58 mph

Rotational Movement Kinematics

Similar to how linear velocity is defined, angular velocity is the angle swept by unit of time. Tangential velocity is the equivalent of linear velocity for a particle moving on a circumference.

Angular Velocity Definition

Average angular velocity: $\bar{\omega}=\frac{\Delta \theta}{\Delta t}$

Instantaneous angular velocity: $\quad \omega=\frac{d \theta}{d t}$ angle θ : radians

Average tangential velocity:

Instantaneous tangential velocity: s : length of arc

$$
s=\theta \cdot r
$$

$$
\begin{gathered}
v_{T}=r \frac{d \theta}{d t} \quad \text { or } \quad v_{T}=r \cdot \omega \\
\alpha=\frac{d \omega}{d t} \quad a_{T}=\frac{d v_{T}}{d t} \\
\alpha=\frac{d^{2} \theta}{d t^{2}} \quad a_{T}=r \frac{d^{2} \theta}{d t^{2}} \\
a_{T \cdot}=\alpha \cdot r
\end{gathered}
$$

Rotational Kinetic Energy and Momentum of Inertia of a Rigid Body

- For a single particle:

Tangential kinetic energy: $\quad K=1 / 2 m v_{T}^{2}$
Rotational kinetic energy: $\quad K=1 / 2 I \omega^{2}$
Momentum of inertia: $\quad I=m r^{2}$

- For a system of particles:

Momentum of inertia: $\quad I=\sum m r_{i}^{2}$

- For a rigid body:

Momentum of inertia: $\quad I=\int r^{2} d m$

Angular Momentum and Torque of a Rigid Body

- Law of lever: $\tau=F \cdot d$
- Torque: $\vec{\tau}=\vec{r} \times \vec{F}$

Magnitude: $\tau=r \cdot F \cdot \sin \theta$

- Newton's $\vec{F}=m \cdot \vec{a}$ second law:

$$
=m \cdot \frac{d \vec{v}}{d t}
$$

Torque is a measure of how much a force acting on an object causes that object to rotate. It is formally defined as a vector coming from the special product of the position vector of the point of application of the force, and the force vector. Its magnitude depends on the angle between position and force vectors. If these vectors are parallel, the torque is zero.

Angular Momentum and Torque of a Rigid Body

- Linear momentum: $\quad \vec{P}=m \cdot \vec{v}$
- Force definition: $\quad \vec{F}=\frac{d}{d t}(m \cdot \vec{v})$

$$
\text { For } m=\text { constant: } \quad \begin{aligned}
& =m \cdot \frac{d \vec{v}}{d t} \\
& =m \cdot \vec{a}
\end{aligned}
$$

- Angular momentum: $\vec{L}=\vec{r} \times \vec{p}$

$$
=m \cdot \vec{r} \times \vec{v}
$$

$$
\text { If } \vec{r} \perp \vec{F}: \quad L=m \cdot r \cdot v_{T}
$$

Defining torque (force producing rotation) in a circular movement (r constant) as the change in time of the angular moment:

$$
\tau=\frac{d L}{d t}=m \cdot r \frac{d v_{T}}{d t}=m \cdot r \cdot a_{T}
$$

Angular Momentum and Torque of a Rigid Body

- Linear momentum: $\vec{P}=m \cdot \vec{v}$
- Force definition: $\vec{F}=\frac{d}{d t}(m \cdot \vec{v})$

For $m=$ constant: $\quad=m \cdot \frac{d \vec{v}}{d t}$

$$
=m \cdot \vec{a}
$$

- Angular momentum: $\vec{L}=\vec{r} \times \vec{p}$

$$
\begin{aligned}
& =m \cdot \vec{r} \times \vec{v} \\
\text { If } \vec{r} \perp \vec{F}: \quad L & =m \cdot r \cdot v_{T}
\end{aligned}
$$

Taking $a_{I}=\alpha \cdot r$, and making $I=m \cdot r^{2}$:

$$
\begin{gathered}
\tau=m \cdot r \cdot a_{T}=m \cdot r^{2} \cdot \alpha \\
\text { or } \\
\tau=I \cdot \alpha
\end{gathered}
$$

Friction Force for a Rigid Sphere Rolling on an Incline

The sphere rolls because of the torque produced by the friction force f_{s} and the weight's component parallel to the incline:

$$
F=m \cdot a=m \cdot g \cdot \sin \theta-f_{s} \quad \text { and } \quad \tau=f_{s} \cdot r=I \cdot \alpha
$$

If the sphere's momentum of inertia is $I=2 / 5 \cdot m \cdot r^{2}$ and $\alpha=a / r$:

$$
f_{s} \cdot r=\frac{2}{5} m \cdot r^{2} \cdot \frac{a}{r} \quad \text { or } \quad f_{s}=\frac{2}{5} m \cdot a
$$

With this value:

$$
m \cdot a=m \cdot g \cdot \sin \theta-\frac{2}{5} m \cdot a
$$

Solving for a in the above equation, the acceleration of the sphere rolling on the incline is:

$$
a=\frac{5}{7} \cdot g \cdot \sin \theta
$$

Friction Force for a Rigid Sphere Rolling on an Incline

Combining: $\quad f_{s}=\frac{2}{5} m \cdot a \quad$ and $\quad a=\frac{5}{7} \cdot g \cdot \sin \theta$
the static friction force is now:

$$
f_{s}=\frac{2}{7} m \cdot g \cdot \sin \theta
$$

But by definition, the static friction force is proportional to the normal force the body exerts on the surface :

$$
f_{s}=\mu_{s} \cdot F_{n}
$$

Taking F_{n} from the free-body diagram:

$$
f_{s}=\mu_{s} \cdot m \cdot g \cdot \cos \theta
$$

Friction Force for a Rigid Sphere Rolling on an Incline

Combining the two expressions for f_{s} :

$$
\mu_{s} \cdot m \cdot g \cdot \sin \theta=\frac{2}{7} m \cdot g \cdot \sin \theta
$$

the coefficient of static friction can be expressed as:

$$
\mu_{s}=\frac{2}{7} \tan \theta
$$

This expression states that the coefficient of static friction is a function of the incline's angle only, specifically, a function of the slope of this surface.

Friction Force for a Rigid Sphere Rolling on a Variable Slope Path

At any point of a curved path $f(x)$, a tangent line can be visualized as a portion of an incline.

The slope m of this incline is the tangent of the angle between this line and the horizontal, $\tan \theta$.

In calculus, this slope is given by the value of $f^{\prime}(x)$, the derivative of the function $f(x)$ at that point.

Let $f(x)$ a differentiable function. If:

$$
m=\frac{d y}{d x}=f^{\prime}(x) \quad \text { and } \quad m=\tan \theta
$$

$$
\text { then: } \tan \theta=f^{\prime}(x)
$$

The coefficient of static friction μ_{s} can be expressed as:

$$
\mu_{s}=\frac{2}{7} f^{\prime}(x)
$$

The static friction force f_{s} is now:

$$
f_{s}=\frac{2}{7} m \cdot g \cdot f^{\prime}(x) \cdot \cos \theta
$$

Friction Force for a Rigid Sphere Rolling on a Variable Slope Path

Because $\tan \theta=f^{\prime}(x)$, it is possible to define a right triangle with sides in terms of $f^{\prime}(x)$:

$$
\tan \theta=\frac{f^{\prime}(x)}{1}=\frac{\text { opposite }}{\text { adjacent }}
$$

If: $\quad \theta=\arctan \left(f^{\prime}(x)\right)$, then:

$$
f_{s}=\frac{2}{7} m \cdot g \cdot f^{\prime}(x) \cdot \cos \left(\arctan \left(f^{\prime}(x)\right)\right)
$$

Using basic trigonometry:

$$
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{1}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}
$$

The static friction force is now: $\quad f_{s}=\frac{2}{7} m \cdot g \cdot \frac{f^{\prime}(x)}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}$

Friction Force for a Rigid Sphere Rolling on a Variable Slope Path

But, something needs to be fixed in this procedure. By definition, the static friction coefficient μ_{s} must always be positive, while the slope of a path may be positive or negative.

So the required corrections must be:

$$
\begin{gathered}
\mu_{s}=\frac{2}{7}\left|f^{\prime}(x)\right| \\
f_{s}=\frac{2}{7} m \cdot g \cdot \frac{\left|f^{\prime}(x)\right|}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}
\end{gathered}
$$

Where: $\left|f^{\prime}(x)\right|$ denotes the absolute value of the function $f^{\prime}(x)$

Work-Energy for a Sphere Rolling on a Variable Slope Path with Friction

The work-energy theorem states that the mechanical energy (kinetic energy + potential energy) of an isolated system under only conservative forces remains constant:

$$
\begin{gathered}
E_{f}=K_{f}+U_{f}=K_{i}+U_{i}=E_{i} \\
\text { or } \\
\Delta E=\Delta K+\Delta U=0
\end{gathered}
$$

In a system under non-conservative forces, like friction, the work-energy theorem states that work done by these forces is equivalent to the change in the mechanical energy:

$$
\Delta W_{f}=\Delta E=\Delta K+\Delta U
$$

Additionally, the work done by non-conservative forces depends on the path or trajectory of the system, or in the time these forces affect the system.

Friction Force for a Rigid Sphere Rolling on a Variable Slope Path

By definition, mechanical work is the product of the displacement and the force component along the displacement:

For a variable slope path $y=f$ (x), the work done by the friction f_{s} over a portion $\Delta \mathrm{s}$ of the path is:

$$
\begin{aligned}
\Delta W & =f_{s} \cdot \Delta s \\
& =\frac{2}{7} m \cdot g \cdot \frac{\left|f^{\prime}(x)\right|}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}} \cdot \Delta s
\end{aligned}
$$

For a differential portion of the path:

$$
d W=\frac{2}{7} m \cdot g \cdot \frac{\left|f^{\prime}(x)\right|}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}} \cdot d s
$$

Friction Force for a Rigid Sphere Rolling on a Variable Slope Path

Expressing $d s$ in terms of the differentials $d x$ and $d y$, the differential arc can be expressed in terms of the $f^{\prime}(x)$:

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)(d x)^{2}}=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \cdot d x
$$

The work along the differential portion of the path can be expressed as:

$$
\begin{aligned}
d W & =\frac{2}{7} m \cdot g \cdot \frac{\left|f^{\prime}(x)\right|}{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}} \cdot d s \\
& =\frac{2}{7} m \cdot g \cdot \frac{\left|f^{\prime}(x)\right|}{\sqrt{1-\left(f^{\prime}(x)\right)^{2}}} \cdot \sqrt{1-\left(f^{\prime}(x)\right)^{2}} \cdot d x \\
d W & =\frac{2}{7} m \cdot g \cdot\left|f^{\prime}(x)\right| \cdot d x
\end{aligned}
$$

Friction Force for a Rigid Sphere Rolling on a Variable Slope Path

Because $d x>0$, using properties of the absolute value and the definition of differential of a function:

$$
\begin{aligned}
d W & =\frac{2}{7} m \cdot g \cdot\left|f^{\prime}(x)\right| \cdot d x \\
& =\frac{2}{7} m \cdot g \cdot\left|f^{\prime}(x) \cdot d x\right| \\
& =\frac{2}{7} m \cdot g \cdot|d f(x)|
\end{aligned}
$$

Friction forces always acts against the movement, so the work done by them must always be negative:

$$
d W=-\frac{2}{7} m \cdot g \cdot|d f(x)|
$$

Friction Force for a Rigid Sphere Rolling on a Variable Slope Path

Taking small displacements instead differentials:

$$
\Delta W=-\frac{2}{7} m \cdot g \cdot|\Delta f(x)| \quad \Delta W_{f}=\Delta K+\Delta U
$$

Using this expression in the work-energy theorem:

$$
-\frac{2}{7} m \cdot g \cdot|\Delta f(x)|=1 / 2 m \cdot v_{f}{ }^{2}-1 / 2 m \cdot v_{i}^{2}+m \cdot g \cdot h_{f}-m \cdot g \cdot h_{i}
$$

This expression relates the work done by friction with the mechanical energy of a sphere rolling on a little portion of a curved path.

Visualize this portion as a little incline.
Height h is given by the function $f(x)$.

Friction Force for a Rigid Sphere Rolling on a Variable Slope Path

Then, dividing by m :

$$
-\frac{2}{7} \cdot g \cdot\left|f\left(x_{f}\right)-f\left(x_{i}\right)\right|=1 / 2 \cdot v_{f}^{2}-1 / 2 \cdot v_{i}^{2}+g \cdot f\left(x_{f}\right)-g \cdot f\left(x_{i}\right)
$$

From this expression, we can determine final velocity at the end of the incline:

$$
v_{f}=\sqrt{1 / 2 \cdot v_{i}^{2}-2 g \cdot\left(f\left(x_{f}\right)-f\left(x_{i}\right)\right)-\frac{4}{7} \cdot g \cdot\left|f\left(x_{f}\right)-f\left(x_{i}\right)\right|}
$$

Friction Force for a Rigid Sphere Rolling on a Variable Slope Path

Are you ready to apply what you have learned?

