Box A

Can you find your blind spot? **The Blind Spot**

It is logical to suppose that a visual field defect (called a scotoma) arising from damage to the retina or central visual pathways would be obvious to the individual suffering from such pathology. When the deficit involves a peripheral region of the visual field, however, a scotoma often goes unnoticed until a car accident or some other mishap all too dramatically reveals the sensory loss. In fact, all of us have a physiological scotoma of which we are quite unaware, the so-called "blind spot." The blind spot is the substantial gap in each monocular visual field that corresponds to the location of the optic disk, the receptor-free region of the retina where the optic nerve leaves the eye (see Figure 11.1).

To find the "blind spot" of the right eye, close the left eye and fixate on the X shown in the figure here, holding the book about 30-40 centimeters away. Now take a pencil in your right hand and, without breaking fixation, move the tip slowly toward the X from the right side of the page. At some point, the tip of the pencil (indeed the whole end of the pencil) will disappear; mark this point and continue to move the pencil to the left until it reappears; then make another mark. The borders of the blind spot along the vertical axis can be determined in the same way by moving the pencil

up and down so that its path falls between the two horizontal marks. To prove that information from the region of visual space bounded by the marks is really not perceived, put a penny inside the demarcated area. When you fixate the X with both eyes and then close the left eye, the penny will disappear, a seemingly magical event that amazed the French royal court when it was first reported by the natural philosopher Edmé Mariotte in 1668.

How can we be unaware of such a large defect in the visual field (typically about $5^{\circ}-8^{\circ}$? The optic disk is located in the nasal retina of each eye. With both eyes open, information about the corresponding region of visual space is, of course, available from the temporal retina of the other eye. But this fact does not explain why the blind spot remains undetected with one eye closed. When the world is viewed monocularly, the visual system appears to "fill-in" the missing part of the scene based on the information supplied by the regions surrounding the optic disk. To observe this phenomenon, notice what happens when a pencil or some other object lies across the optic disk representation. Remarkably, the pencil looks complete! Although electrophysiological recordings have shown that neurons in the visual

cortex whose receptive fields lie in the optic disk representation can be activated by stimulating the regions that surround the optic disk of the contralateral eye, suggesting that "filling-in" the blind spot is based on cortical mechanisms that integrate information from different points in the visual field, the mechanism of this striking phenomenon is not clear. Herman von Helmholtz pointed out in the nineteenth century that it may just be that this part of the visual world is ignored, the pencil being completed across the blind spot because the rest of the scene simply "collapses" around it.

References

FIORANI, M., M. G. P. ROSA, R. GATTASS AND C. E. ROCHA-MIRANDA (1992) Dynamic surrounds of receptive fields in striate cortex: A physiological basis for perceptual completion? Proc. Natl. Acad. Sci. USA 89: 8547-8551

GILBERT, C. D. (1992) Horizontal integration and cortical dynamics. Neuron 9: 1-13.

RAMACHANDRAN, V. S. AND T. L. GREGORY (1991) Perceptual filling in of artificially induced scotomas in human vision. Nature 350: 699-702

VON HELMHOLTZ, H. (1968). Helmholtz's Treatise on Physiological Optics, Vols. I-III (Translated from the Third German Ed. published in 1910). J. P. C. Southall (ed.). New York: Dover Publications. See pp. 204ff in Vol. III.