Formula-Free Geometry

Area and Volume

Exact Geometry

Inexact Geometry

No formula for green area

$$
A=?
$$

Random Procedure

Uniform Random

Occurring with equal probability

- Drop a point at any location within the square
- The likelihood of a point falling inside the region is determined by the proportion of area that the shaded region fills

$$
\frac{N_{i n}}{N_{t o t}} \approx \frac{A_{i n}}{A_{t o t}}
$$

Random Points

- 24 points total
- 11 points inside
$-\frac{N_{\text {in }}}{N_{\text {tot }}} \approx \frac{A_{\text {in }}}{A_{\text {tot }}}$
green area $\approx 11 / 24$

Real Geometry

Can we use this for real problems? YES !

Real Geometry

Use a computer to generate MANY random points

Real Geometry

Real Geometry

Today's Challenge

- The constant π describes the geometry of any circle of any size.
- Ever wonder why $\pi=3.14159$?
- Today, we'll use approximated geometry to investigate π

Circle in a Square

Known formula: if you know π

Simulated Random Points

Use the EV3 Brick to...

- Simulate many random 2-D points
- Use $x^{2}+y^{2}=r^{2}$
- Use $\frac{N_{\text {in }}}{N_{\text {tot }}}$ to estimate area

How Close to π ?

- Find average of five estimates
- Find the percent error relative to 3.14159
- Find the 'standard error' of samples
- Tighter error \rightarrow better confidence

π

How Close? Standard Error

- Samples: \{3.1635, 3.1393, 3.1453\}
- Average: $\bar{x}=3.1494$
- Sum of deviations:
- $\mathrm{S}=(3.1635-\bar{x})^{2}+(3.1393-\bar{x})^{2}+(3.1453-\bar{x})^{2}$
- $\mathrm{S}=0.0003176$
- Standard Error:
- $\mathrm{SE}=x=\sqrt{\frac{S}{3(3-1)}}$
- $\mathrm{SE}=.007276$

