Formula-Free Geometry

Exact Geometry

Inexact Geometry

No formula for green area

$$A = ?$$

Random Procedure Uniform Random Occurring with equal probability

Drop a point at any location within the square

The likelihood of a point falling inside the region is determined by the proportion of area that the shaded region fills

$$\frac{N_{in}}{N_{tot}}\approx \frac{A_{in}}{A_{tot}}$$

Random Points

24 points total
11 points inside
 $\frac{N_{in}}{N_{tot}} \approx \frac{A_{in}}{A_{tot}}$

green area $\approx \frac{11}{24}$

Real Geometry Can we use this for real problems?YES!

25000 km

Real Geometry Use a computer to generate MANY random points

25000 km

Real Geometry

Real Geometry

Today's Challenge

- The constant π describes the geometry of any circle of any size.
- Ever wonder why $\pi = 3.14159$?
- ▶ Today, we'll use approximated geometry to investigate π

Circle in a Square

Known formula: if you know π

Simulated Random Points Use the EV3 Brick to...

Simulate many random 2-D points

► Use
$$x^2 + y^2 = r^2$$

• Use $\frac{N_{in}}{N_{tot}}$ to estimate area

How Close to π ?

- Find average of five estimates
- Find the percent error relative to 3.14159
- Find the 'standard error' of samples
 - Tighter error \rightarrow better confidence

How Close? Standard Error

- Samples: {3.1635, 3.1393, 3.1453}
- Average: $\bar{x} = 3.1494$
- Sum of deviations:
 - S = $(3.1635 \bar{x})^2 + (3.1393 \bar{x})^2 + (3.1453 \bar{x})^2$
 - S = 0.0003176
- Standard Error:

• SE =
$$x = \sqrt{\frac{S}{3(3-1)}}$$

• SE = .007276