A Chance at Monte Carlo Activity — Monte Carlo Simulation Worksheet

Inscribed Circle

Area of the square: ______________

Area of the circle: ______________
(hint: find radius first)

Ratio of areas (circle to square): ______________

Single Quadrant

Both the area of the square and the area of the circle are divided by four.

What is the area of the un-shaded square?

What is the area of the quarter circle wedge?

Is the ratio the same as before? (YES or NO)
Estimating the Area

Find the number of points inside the wedge versus the total number of points (100).

Hint: it may help to count the points outside; for example: \(N_{\text{in}} = 100 - N_{\text{out}} \)

\[
\frac{N_{\text{in}}}{100} \approx \frac{\pi}{4}, \text{ then } \pi \approx \frac{4N_{\text{in}}}{100}
\]

What is your estimate of \(\pi \)? ______________

Collecting Data

1. Use the **EV3** program to collect five estimates of \(\pi \) from 100 simulated points:
 __________, __________, __________, __________, __________

2. What is the average estimate \(\bar{x} \): __________

3. Below are two ways to evaluate the quality of the estimate. Since we already have a "gold standard" for \(\pi \), we can compute the **percent error**:
 \[
 100 \times \frac{|3.14159 - \bar{x}|}{3.14159}
 \]

 The **standard error** is a better measure of quality when we do not have a gold standard (when we estimate an unknown quantity). The standard error measures how widely the different estimates differ from the average.
 \[
 SE = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n(n-1)}} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \cdots + (x_n - \bar{x})^2}{n(n-1)}}
 \]

 What is the percent error? __________
 What is the standard error? __________

4. Reset the **EV3** program to use 500 simulations.
 __________, __________, __________, __________, __________

 The average estimate is: __________

 The percent error is: __________
 The standard error is: ________________
5. Repeat the experiment for 1000 and 4000 simulations.

<table>
<thead>
<tr>
<th>1000 points</th>
<th>4000 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>The average estimate is: __________</td>
<td>The average estimate is: __________</td>
</tr>
<tr>
<td>The percent error is: __________</td>
<td>The percent error is: __________</td>
</tr>
<tr>
<td>The standard error is: __________</td>
<td>The standard error is: __________</td>
</tr>
</tbody>
</table>

Extra Credit

1. Plot the estimation errors versus simulated points.