Derivations

This worksheet is intended to document the derivation of the least squares procedure followed to fit Model 1 and Model 2 to acceleration data. It is not needed during the activity, but may be adapted to use in student research or marking period project.

1 Piecewise constant model (Model 1)

We are given acceleration values $a_{1}, a_{2}, \cdots, a_{N}$ for the times $t_{1}, t_{2}, \cdots, t_{N}$. Our goal is to fit a constant c_{1} to the data over the interval $0 \leq t \leq t_{1}$, and another constant c_{2} over the interval $t_{1}<t \leq t_{2}$. In doing so, we must make sure that the total area under the fitted graph is equal to zero, corresponding to zero initial and final racer velocities. This is a constrained least squares problem. Let N_{1} and N_{2} denote the number of acceleration data points that fall in time intervals $0 \leq t \leq t_{1}$ and $t_{1}<t \leq t_{2}$. We can then minimize

$$
\begin{equation*}
F=\sum_{i=1}^{N_{1}}\left(c_{1}-a_{i}\right)^{2}+\sum_{i=N_{1}+1}^{N_{2}}\left(c_{2}-a_{i}\right)^{2} \tag{1}
\end{equation*}
$$

subject to the constraint

$$
\begin{equation*}
G=c_{1} t_{1}+c_{2}\left(t_{2}-t_{1}\right)=0 . \tag{2}
\end{equation*}
$$

We can solve this problem by forming the Lagrangian

$$
\begin{equation*}
\operatorname{grad} F=\lambda \operatorname{grad} G, \text { and } G=0, \tag{3}
\end{equation*}
$$

which gives us three equations in three unknowns

$$
\begin{align*}
& 2 \sum_{i=1}^{N_{1}}\left(c_{1}-a_{i}\right)=\lambda t_{1} \\
& 2 \sum_{i=N_{1}+1}^{N_{2}}\left(c_{2}-a_{i}\right)=\lambda\left(t_{2}-t_{1}\right) \tag{4}\\
& c_{1} t_{1}+c_{2}\left(t_{2}-t_{1}\right)=0
\end{align*}
$$

Eliminating λ from equations 1 and 2 leaves us with two linear equations in two unknowns c_{1} and c_{2}

$$
\begin{align*}
& \frac{N_{1}}{t_{1}} c_{1}+\frac{N_{2}}{t_{1}-t_{2}} c_{2}=\frac{1}{t_{1}} \sum_{i=1}^{N_{1}} a_{i}+\frac{1}{t_{1}-t_{2}} \sum_{i=N_{1}+1}^{N_{2}} a_{i}=\beta \tag{5}\\
& c_{1} t_{1}+c_{2}\left(t_{2}-t_{1}\right) .
\end{align*}
$$

When we solve these two equations for the unknowns c_{1} and c_{2}, we get

$$
\begin{align*}
& c_{1}=\frac{t_{1}\left(t_{1}-t_{2}\right)^{2} \beta}{\left(t_{1}^{2} N_{2}+\left(t_{1}-t_{2}\right)^{2} N_{1}\right)} \\
& c_{2}=\frac{t_{1}^{2}\left(t_{1}-t_{2}\right) \beta}{\left(t_{1}^{2} N_{2}+\left(t_{1}-t_{2}\right)^{2} N_{1}\right)} \tag{6}
\end{align*}
$$

where β is

$$
\begin{equation*}
\beta=\frac{1}{t_{1}} \sum_{i=1}^{N_{1}} a_{i}+\frac{1}{t_{1}-t_{2}} \sum_{i=N_{1}+1}^{N_{2}} a_{i} . \tag{7}
\end{equation*}
$$

These formulas are implemented in the Analysis Spreadsheet.

2 Piecewise linear model (Model 2)

We are given acceleration data $a_{1}, a_{2}, \cdots, a_{N}$ along with times $t_{1}, t_{2}, \cdots, t_{N}$, and we want to fit a line $\alpha_{1}+\beta_{1} t$ to data over the interval $0 \leq t \leq t_{1}$ and another line $\alpha_{2}+\beta_{2} t$ to data over the interval $t_{1}<t \leq t_{2}$. Whereas we had to find only two unknowns in the case of the piecewise constant model, in the piecewise linear model, we need to find four unknowns. Let N_{1} and
N_{2} denote the number of acceleration data points that fall in time intervals $0 \leq t \leq t_{1}$ and $t_{1}<t \leq t_{2}$. We can then minimize

$$
\begin{equation*}
\sum_{i=1}^{N_{1}}\left(\alpha_{1}+\beta_{1} t_{i}-a_{i}\right)^{2}+\sum_{i=N_{1}+1}^{N_{2}}\left(\alpha_{2}+\beta_{2} t_{i}-a_{i}\right)^{2} \tag{8}
\end{equation*}
$$

subject to the zero area constraint

$$
\begin{equation*}
\alpha_{1} t_{1}+\frac{1}{2} \beta_{1} t_{1}^{2}+\alpha_{2}\left(t_{2}-t_{1}\right)+\frac{1}{2} \beta_{2}\left(t_{2}^{2}-t_{1}^{2}\right)=0 . \tag{9}
\end{equation*}
$$

This problem is more easily solved by working with matrices. Let's define a vector of unknowns

$$
\theta=\left(\begin{array}{llll}
\alpha_{1} & \beta_{1} & \alpha_{2} & \beta_{2} \tag{10}
\end{array}\right)^{t}
$$

two vectors of acceleration measurements

$$
\begin{align*}
& A_{1}=\left(\begin{array}{lll}
a_{1} & \cdots & a_{N_{1}}
\end{array}\right)^{t} \\
& A_{2}=\left(\begin{array}{lll}
a_{N_{1}+1} & \cdots & a_{N_{2}}
\end{array}\right)^{t} \tag{11}
\end{align*}
$$

a vector of constants

$$
C=\left(\begin{array}{llll}
t_{1} & \frac{1}{2} t_{1}^{2} & \left(t_{2}-t_{1}\right) & \frac{1}{2}\left(t_{2}^{2}-t_{1}^{2}\right) \tag{12}
\end{array}\right)^{t}
$$

and two matrices T_{1} and T_{2} as

$$
\begin{gather*}
T_{1}=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
t_{1} & \cdots & t_{N_{1}} \\
0 & \cdots & 0 \\
0 & \cdots & 0
\end{array}\right)^{t} \tag{13}\\
T_{2}=\left(\begin{array}{ccc}
0 & \cdots & 0 \\
0 & \cdots & 0 \\
1 & \cdots & 1 \\
t_{N_{1}+1} & \cdots & t_{N_{2}}
\end{array}\right)^{t} \tag{14}
\end{gather*}
$$

We can now write our constrained optimization as follows. Mimimize the quantity

$$
\begin{equation*}
\left(A_{1}-T_{1} \theta\right)^{t}\left(A_{1}-T_{1} \theta\right)+\left(A_{2}-T_{2} \theta\right)^{t}\left(A_{2}-T_{2} \theta\right) \tag{15}
\end{equation*}
$$

with respect to θ, subject to the constraint

$$
\begin{equation*}
C^{t} \theta=0 \tag{16}
\end{equation*}
$$

To solve this problem, we form the Lagrangian

$$
\begin{equation*}
J=\frac{1}{2}\left(A_{1}-T_{1} \theta\right)^{t}\left(A_{1}-T_{1} \theta\right)+\frac{1}{2}\left(A_{2}-T_{2} \theta\right)^{t}\left(A_{2}-T_{2} \theta\right)-\left(C^{t} \theta\right)^{t} \lambda \tag{17}
\end{equation*}
$$

Equating the derivative to zero gives us

$$
\begin{equation*}
\theta=\left(T_{1}^{t} T_{1}+T_{2}^{t} T_{2}\right)^{-1}\left(T_{1}^{t} A_{1}+T_{2}^{t} A_{2}\right)-\left(T_{1}^{t} T_{1}+T_{2}^{t} T_{2}\right)^{-1} C \lambda \tag{18}
\end{equation*}
$$

To solve for λ, we can plug in for the constraint to get

$$
\begin{equation*}
\lambda=\left(C^{t}\left(T_{1}^{t} T_{1}+T_{2}^{t} T_{2}\right)^{-1} C\right)^{-1} C^{t}\left(\left(T_{1}^{t} T_{1}+T_{2}^{t} T_{2}\right)^{-1}\left(T_{1}^{t} A_{1}+T_{2}^{t} A_{2}\right)\right) \tag{19}
\end{equation*}
$$

Substituting this expression for λ in equation (18) gives us the solution

$$
\begin{equation*}
\theta=M_{1}^{-1} M_{2}-\frac{M_{1}^{-1} C C^{t}}{C^{t} M_{1}^{-1} C} M_{1}^{-1} M_{2} \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
& M_{1}=T_{1}^{t} T_{1}+T_{2}^{t} T_{2} \tag{21}\\
& M_{2}=T_{1}^{t} A_{1}+T_{2}^{t} A_{2}
\end{align*}
$$

This formula is implemented in the Analysis Spreadsheet.

