\qquad

Measuring Distance with Sound Waves Activity Distance and Time Worksheet

Part I: Distance and Time

1. Look around and choose a stationary object.
2. Turn on the LEGO® Ultrasonic sensor and obtain ultrasonic measurements in
 centimeters. Log that distance in Table 1.
3. Take two more distance measurements and log them in Table 1, for a total of three measurements (Take 1, Take 2 and Take 3).
4. Obtain the average of these three measurements and log it in the last column of Table 1.

Table 1				
Distance to object Take 1 (in cm)	Distance to object Take 2 (in cm	Distance to object Take 3 (in $\mathbf{~ c m}$	Distance to object Average (in cm)	

5. Convert the average measured distance to the object from Table 1 into meters, and log the conversion in Table 2.
6. Ask your instructor for a value of the speed of sound at current classroom temperature and log it in Table 2.
7. Calculate the time it takes for a sound wave to get from the sensor to the object (one way trip) using the distance formula. Log the calculation in Table 2.
8. Calculate the time it takes for a sound wave to travel from the sensor to the object and back (round-trip). Log the calculation in Table 2.
9. Convert the round-trip time of a sound wave from seconds into microseconds. Log the calculation in Table 2. Remember that 1 second $=1000000$ microseconds or 1 microsecond $=10^{-6}$ seconds.

Table 2					
Distance to object Average (meters)	Speed of sound (m/s)	Time to the object (s)	Round-trip time (s)	Round-trip time (microseconds)	

\qquad
\qquad

Part II: Frequency

Recall that the frequency of a wave is defined as a number of cycles a wave completes in a second. For example, if the frequency of the wave is 10 Hz , then we can say that this wave completes 10 full cycles in 1 second. We also know that the wave completes 1 cycle in 0.1 seconds or 100,000 microseconds. We can figure this out by phrasing the problem as follows: A wave competes 10 cycles in 1 second, hence 1 cycle is completed after x number of seconds.

Set up a proportion $\frac{10(\text { cycles })}{1(s)}=\frac{1(\text { cycle })}{x(s)}$, solve for x, and convert into microseconds to get the above result. Since it takes 100,000 microseconds for a wave to complete 1 cycle, then after 4,000,000 microseconds, the wave completes 40 cycles.

Questions

1. How many cycles does the LEGO® Ultrasonic sensor wave make in 1 second? Note that the frequency of a LEGO Ultrasonic sensor wave is $\mathbf{4 0} \mathbf{0 0 0} \mathbf{~ H z}$.
\qquad (cycles)
2. Calculate the time it takes for LEGO Ultrasonic sensor wave to travel one cycle?
\qquad (microseconds)
3. How many cycles does the LEGO® Ultrasonic sensor wave go through, traveling from a sensor to the object and back? To answer this question, use the calculated round-trip time in Table 2.
\qquad
