Measuring Distance with Sound Waves Activity – Distance and Time Worksheet

Part I: Distance and Time

- 1. Look around and choose a stationary object.
- 2. Turn on the LEGO®
 Ultrasonic sensor and obtain
 ultrasonic measurements in
 centimeters. Log that distance
 in Table 1.

- 3. Take two more distance measurements and log them in Table 1, for a total of three measurements (Take 1, Take 2 and Take 3).
- 4. Obtain the average of these three measurements and log it in the last column of Table 1.

Table 1				
Distance to object Take 1 (in cm)	Distance to object Take 2 (in cm)	Distance to object Take 3 (in cm)	Distance to object Average (in cm)	

- 5. Convert the average measured distance to the object from Table 1 into meters, and log the conversion in Table 2.
- 6. Ask your instructor for a value of the speed of sound at current classroom temperature and log it in Table 2.
- 7. Calculate the time it takes for a sound wave to get from the sensor to the object (one way trip) using the distance formula. Log the calculation in Table 2.
- 8. Calculate the time it takes for a sound wave to travel from the sensor to the object and back (round-trip). Log the calculation in Table 2.
- 9. Convert the round-trip time of a sound wave from seconds into microseconds. Log the calculation in Table 2. Remember that $1 \ second = 1 \ 000 \ 000 \ microseconds$ or $1 \ microsecond = 10^{-6} \ seconds$.

		Table 2		
Distance to object Average (meters)	Speed of sound (m/s)	Time to the object (s)	Round-trip time (s)	Round-trip time (microseconds)

Naı	me: Date:
Par	rt II: Frequency
sec con	call that the frequency of a wave is defined as a number of cycles a wave completes in a ond. For example, if the frequency of the wave is 10 Hz, then we can say that this wave npletes 10 full cycles in 1 second. We also know that the wave completes 1 cycle in 0.1 onds or 100,000 microseconds. We can figure this out by phrasing the problem as follows:
A n	vave competes 10 cycles in 1 second, hence 1 cycle is completed after x number of seconds.
abo	up a proportion $\frac{10(cycles)}{1(s)} = \frac{1(cycle)}{x(s)}$, solve for x , and convert into microseconds to get the over result. Since it takes 100,000 microseconds for a wave to complete 1 cycle, then after 00,000 microseconds, the wave completes 40 cycles.
Qu	estions
]	How many cycles does the LEGO® Ultrasonic sensor wave make in 1 second? Note that the frequency of a LEGO Ultrasonic sensor wave is 40 000 Hz. (cycles)
2.	Calculate the time it takes for LEGO Ultrasonic sensor wave to travel one cycle?
	(microseconds)
:	How many cycles does the LEGO® Ultrasonic sensor wave go through, traveling from a sensor to the object and back? To answer this question, use the calculated round-trip time in Table 2.
	(cycles)