This code was designed for simulating the movement of a volleyball ball on the Earth. However, it could be done some changes to teach the students how a code works and what are the effects when some variables change.

1. Copy and paste the following entire code into octave-online.net
2. Ask the students to modify the numbers (highlighted in yellow) to understand how the serving speed, serve angle, and player height could influence in the ball trajectory on the Earth.
3. Now, ask to change the gravity value (highlighted in green) from 32.2 ft/s² to 5.37 ft/s² (gravity on the Moon). Let them to explore with the other variables to see what happens.

```matlab
%%
%these are the variables you need to edit
gravity = 32.2; %feet per second squared
serving_speed = 45; %feet per second
serve_angle = 20; %degrees
player_height = 6; %feet
court_length = 60; %feet
net_height = 7; %feet
%
initial_velocity_x = serving_speed * cosd(serve_angle);
initial_velocity_y = serving_speed * sind(serve_angle);

%final_velocity_x = initial_velocity_x;
final_velocity_y = -sqrt(initial_velocity_y ^ 2 + 2 * gravity * player_height);

travel_time = (final_velocity_y - initial_velocity_y) / -gravity;

%x = ones(1, 61);
%y = x;
v = zeros(1, 61);

v(1) = initial_velocity_y;
x(1) = 0;
y(1) = player_height;

t = linspace(0, travel_time, 61);
```
dt = t(2) - t(1);
%\(z = 1; \)

%yline(net_height, 'LineWidth',5); %horizontal line, net
hold on;
%xline(court_length, 'LineWidth',5); %vertical line, back boundry line
%yline(0, 'LineWidth',5); %horizontal line, floor
%plot(60, 0, 'rx', 'MarkerSize',10);
plot(30, net_height, 'rx', 'MarkerSize',30);
plot([[30 30], [0 net_height], 'LineWidth',5]) %net

for i = 2:61
 \%v(i) = v(i-1) - gravity * dt;
 v(i) = v(1) - gravity * t(i);
 x(i) = x(i-1) + initial_velocity_x * dt;
 \%y(i) = y(i-1) + v(i) * dt - 1/2 * gravity * dt^2;
 y(i) = y(i-1) + v(i-1) * dt - 1/2 * gravity * dt^2;

 % plot(x, y, 'LineWidth',5)
 if y(i) < 0 && i <= 60
 \%z = 0; %ball hit the ground in bounds
 y(30) = 0;
 y(60) = 0;
 break;
 end
end

plot(x, y, 'LineWidth',5)

% for j = 1:length(x)
% if x(j) == 30
% break;
% end
% end

%j = find(x == 30);

%xnew = round(x, 4);
xnew = x;
sub_x = abs(xnew-30);
j = find(sub_x == min(sub_x));

sub_x2 = abs(xnew-60);
k = find(sub_x == min(sub_x2));

hold on;
fprintf('Parameters:
 Player Height: %d ft
 Gravity: %.2f ft/s
 Serving Speed: %d ft/s
 Serving Angle: %d degrees
 Net Height: %d ft
 Court Length: %d ft
', player_height, gravity, serving_speed, serve_angle, net_height, court_length);

if serve_angle == 90 || serve_angle == 270 || y(j) <= net_height
 fprintf('The ball WILL NOT clear the net.
');
else
 fprintf('The ball will clear the net.
');

 if y(k) > 0
 if x(i) > court_length
 fprintf('The ball will land out of bounds (%.2f feet).
', x(i));
 else
 fprintf('The ball will land in bounds (%.2f feet).
', x(i));
 end
 end
end