Date:

Class:

Alternative fuel: Electricity

Instructions: Read this webpage <u>https://afdc.energy.gov/vehicles/electric_emissions.html</u> and then answer the questions below.

Emissions from Hybrid and Plug-In Electric Vehicles:

Besides the emission from the car's tailpipe, what else needs to be considered?

Electricity Sources and Emissions:

Summarize the data presented in the Annual Emissions per Vehicle graph:

Direct and Well-to-Wheel Emissions:

What are direct emissions?

How are direct emissions different for different types of electric vehicles?

EV (all-electric vehicles):

PHEV (Plug-In Hybrid Electric Vehicle) in all electric mode:

PHEV, when using ICE (internal combustion engine):

Date:

What are Well-to-wheel emissions?

Why are well-to-wheel emissions important to consider with electric vehicles?

Use the GREET excel database to complete the chart below:

- 1. Open this link: <u>https://greet.es.anl.gov/greet_1_series</u>
- Click the link underneath "GREET 1 Series (Fuel-Cycle Model) or this link GREET_2020rev1.zip
- 3. Open the GREET folder
- 4. Select "GREET1-2020"

COPYRIGHT NOTIFICATION		Results				
GREET® SOFTWARE GREET1 MODEL	Petroleum	Ethanol	Natural Ga	HS MeOH & FTD	RNG	
Email contact: greet@anl.gov	Electric	Hydrogen	BioOil	Pyrolysis & IDL	Integrated Biorefinery	P
© COPYRIGHT 2017 UChicago Argonne, LLC ALL RIGHTS RESERVED	Fuel Production Time Series	Emission Time	Factors Series	Agricultural and Min Emission Factors	ing Machineries Time Series	
THIS SUP WARE DISCLOSES MALERAL PROTECTED UNDER CUPY RIGHT LAW, AND FOR HER DISSEMINATION IS PROHIBITED WITHOUT PRIOR WRITTER CONSENT OF THE PATENT COUNSEL OF ARGONNE NATIONAL LABORATORY, EXCEPT AS NOTED IN THE "LICENSING TERMS AND CONDITIONS" NOTED BELOW.	Water Consumption Passenger Car Tim Factors Series		ger Car Time Series	Light Duty Truck 1 Time Series	Light Duty Truck 2 Time Series	
ARGONNE NATIONAL LABORATORY, WITH A FACILITY IN THE STATE OF ILLINOIS, IS OWNED BY THE UNITED STATES	Fuel Specifications Vehicles		cles	s Ag Inputs		
OF ENERGY.						
GOVERNMENT LICEN SE						
NOTICE: This data was produced by UChicago Argonne, LLC under Contract No. DE-AC02-06CH11357 with the Department of Energy. For 5 years from August 2017, the Government is granted for itself and others acting on its behalf a nonexclusive, paid- up, irrevocable worldwide license in this data to reproduce, prepare derivative works, and perform publicly and display publicly, by or on behalf of the Government. There is provision for the possible extension of the term of this license. Subsequent to that period or any extension granted, the Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide license in this data to reproduce, prepare derivative works, distribute copies to the public, perform publicly and display publicly, and to permit others to do so. The specific term of the license can be identified by inquiry made to UChicago Argonne, LLC or DOE.						
END-USER LICENSING TERMS AND CONDITIONS						
Redistribution and use of the GREET software is permitted provided that the following conditions are ret.						
 Redistributions of the GREET software must retain the above copyright notice, this list of penditions and the following disclaimer. Modification or reverse compilation of the source code is not percent. 						
wInputsResults Petroleum NG MeOH_FTD EtOH Electric Hydrogen BioOil Algae RNG _	/ Pyrolysis_IDL 🗶	IBR / PTF / E	_fuel 🖊 Fue	el_Prod_TS 🔏 🖣	Ш	

- 5. To use the GREET database, you have to click on the tab at the bottom of the screen. Click the "Electric" tab. The red arrow above is pointing to it.
- 6. There is a lot of information on this database. Scroll all the way down to 12) Fuel-Cycle Energy Use, Water Consumption, and Emissions. Scroll down to the second half of the

Date:

table. The data you are recording is the Energy Consumption, Water Consumption, and Total Emissions for what are the units? Each gallon of ethanol? (it says Btu or Gallons or Grams per mmBtu of electricity available)

7. Because we are interested in reducing carbon emissions and climate change, record the values for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). There are other variables in this chart, but we will focus just on these three. There is a red box around them in the table below.

5 Energy Consumption, Water Consumption, a	nd Total Emission	s: Btu or Gallo	ns or Grams	per mmBtu o	f Electricity Av	ailable at User	Sites (wall ou	tlets)		
3 Total energy	2,560,784	2,560,784	2,042,826	2,315,929	2,053,129	1,751,558	2,498,584	1,810,186	3,480,874	2,70
7 Fossil fuels	2,266,918	2,266,918	1,531,543	1,933,561	1,600,609	1,108,931	2,253,654	1,110,671	3,480,874	2,70
3 Coal	368,564	368,564	658,417	1,249,940	910,209	4,303	1,651,178	20,926	-3	18
Natural gas	1,445,335	1,445,335	855,587	656,566	671,314	1,097,761	574,331	1,060,347	3,468,247	2,48
) Petroleum	453,019	453,019	17,538	27,054	19,085	6,867	28,146	29,397	12,630	1
1 Water consumption	388.509	388.509	189.343	173.671	189.731	346.880	134.231	112.278	9.153	(
2 VOC	43.495	43.495	13.806	17.163	14.013	10.290	19.469	10.423	32.632	2
3 CO	140.105	140.105	56.395	69.248	49.110	38.920	69.961	45.861	117.960	1
4 NOx	552.588	552.588	93.444	134.873	98.430	46.721	154.605	52.759	163.638	11
5 PM10	39.229	39.229	14.146	23.512	16.866	4.012	28.770	4.729	13.873	1
3 PM2.5	36.037	36.037	8.011	11.978	8.569	3.838	13.800	4.308	13.642	
7 SOx	74.017	74.017	84.541	146.926	100.716	15.817	174.641	24.894	36.246	4
3 BC	4.781	4.781	0.479	0.610	0.413	0.305	0.618	0.364	0.639	
9-00-	13.165	13.165	2.144	2.201	1.784	2.241	2.185	2.204	8.961	
CH4	354.934	354.934	261.764	323.273	268.452	197.597	371.454	196.459	622.958	47
1 N2O	4.260	4.260	2.802	4.090	2.742	1.412	4.431	1.722	5.045	
2 CO2	161,377	161,377	118,000	166,066	132,370	67,731	201,381	67,506	206,953	16
2 000 (w/ C in VOC & CO)	161,733	161,733	118,132	166,228	132,491	67,825	201,552	67,611	207,240	16
4 GHGs	173,509	173,509	126,727	177,010	141,271	74,127	213,870	73,961	227,266	18
Urban Emissions										
3 Urban VOC	3.065	3.065	0.925	1.156	0.923	0.780	1.306	0.688	2.827	
7 Urban CO	10.649	10.649	11.380	17.570	12.901	4.728	21.147	4.022	19.866	1
3 Urban NOx	20.580	20.580	24.168	40.010	28.831	6.940	49.057	5.728	31.768	1
9 Urban PM10	2.665	2.665	2.739	4.438	3.210	0.995	5.350	0.921	3.996	
Urban PM2.5	2.452	2.452	2.267	3.555	2.600	0.968	4.257	0.881	3.954	
1 Urban SOx	10.709	10.709	25.346	48.323	33.193	0.619	60.016	1.220	0.810	
2 Urban BC	0.238	0.238	0.103	0.154	0.113	0.048	0.185	0.035	0.119	
3 Urban OC	0.970	0.970	0.572	0.589	0.508	0.619	0.623	0.554	2.681	
4										
5										
5										
2										
-										
4 b bl. Overview Inputs Peculta	Potroloum /NC	MACH ETD	Etou El	octric Used	Pino		NG Durah			
Inputs / Results / I	Petroleum 🔏 NG 🧹	MECH_FID		ecunic 🖉 Hydr	ogen / BIOU	i 🛴 Migae 🛴 r	avo 🖉 Pyroly	SIS_IDL / I		

8. Look through the data table and find the emissions for Illinois. To move through the data table, use the arrow that has the red circle around it in the picture above. Record the data in the table below. This is what you will share when the group comes back together.

Gas emission	State of IL
CH ₄	
N ₂ O	
CO ₂	

The abbreviations in GREET are defined below:

VOC = volatile organic compounds

CO = carbon monoxide

 NO_X = nitric oxide

PM10 = particulate matter with a diameter of 10 micrometers or less

PM2.5 = particulate matter with a diameter of 2.3 micrometers or less SO_X = sulfur oxides BC = black carbon (particulate matter/ soot & contributes to climate change) OC = organic carbon (respiratory effects) CH₄ = methane N_2O = nitrous oxide CO_2 = carbon dioxide

- 9. Fill in the row below for electric energy.
- 10. When everyone is finished learning about the energy sources, share what you have learned with the group. Each individual should summarize the questions they answered and share the GREET emissions that were calculated. Notes should be taken in the table below so that the information can be shared with your poster group.
- 11. Circle the energy source you will use to heat your building (remember that we are assuming that the technology for this will be in place) and complete the information below the table.

Energy Source	Information about energy source	GREET values
Ethanol		
Electric		
Biodiesel		
Natural Gas		
Propane		
Hydrogen		

Type of fuel that will be recommended for use in heating your building structure:

Evidence and reasoning for this recommendation:

12. Return to the "Energy Source" document and continue to step 2.

